YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prognostics and Health Management for Electrified Aircraft Propulsion: State of the Art and Challenges

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 004::page 41018-1
    Author:
    Tang, Liang
    ,
    Saxena, Abhinav
    ,
    Younsi, Karim
    DOI: 10.1115/1.4066598
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In recent years, the aviation industry has witnessed a transformative wave of innovation in electrified aircraft propulsion (EAP), driven by sustainability and efficiency goals. Integration of novel electrical subsystems, including high-voltage power electronics, motors/generators, and energy storage devices, has introduced intricate complexities. In this context, an intensified focus on prognostics and health management (PHM) is imperative, considering the heightened reliability needs in a transportation propulsion application. This paper extensively analyzes the current state of the art in PHM applicable to various EAP systems and components crucial for the functioning of electric aircraft. Typical fault modes and fault management strategies are analyzed at various levels of systems hierarchy. An integral aspect of our investigation involves the identification of critical gaps within existing PHM frameworks, guiding the research agenda for enhanced reliability and performance. Moreover, the distributed nature and increasing complexity of electric propulsion systems underscore the importance of model-based systems engineering (MBSE). We advocate for the exploration of MBSE not only to inform the design and implementation of PHM solutions but also to facilitate certification and Verification and Validation activities. Additionally, the paper offers insights into existing tools and simulation software packages capable of integrating traditional gas turbine modules with electric subsystems, as well as simulating various faulty conditions in EAP relevant to PHM development. Key gaps in these tools are emphasized, drawing attention to areas that require further refinement and development. This comprehensive exploration aims to pave the way for future advancements in PHM tailored for the unique challenges posed by electric aircraft propulsion systems.
    • Download: (987.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prognostics and Health Management for Electrified Aircraft Propulsion: State of the Art and Challenges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308298
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorTang, Liang
    contributor authorSaxena, Abhinav
    contributor authorYounsi, Karim
    date accessioned2025-08-20T09:27:04Z
    date available2025-08-20T09:27:04Z
    date copyright11/5/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_04_041018.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308298
    description abstractIn recent years, the aviation industry has witnessed a transformative wave of innovation in electrified aircraft propulsion (EAP), driven by sustainability and efficiency goals. Integration of novel electrical subsystems, including high-voltage power electronics, motors/generators, and energy storage devices, has introduced intricate complexities. In this context, an intensified focus on prognostics and health management (PHM) is imperative, considering the heightened reliability needs in a transportation propulsion application. This paper extensively analyzes the current state of the art in PHM applicable to various EAP systems and components crucial for the functioning of electric aircraft. Typical fault modes and fault management strategies are analyzed at various levels of systems hierarchy. An integral aspect of our investigation involves the identification of critical gaps within existing PHM frameworks, guiding the research agenda for enhanced reliability and performance. Moreover, the distributed nature and increasing complexity of electric propulsion systems underscore the importance of model-based systems engineering (MBSE). We advocate for the exploration of MBSE not only to inform the design and implementation of PHM solutions but also to facilitate certification and Verification and Validation activities. Additionally, the paper offers insights into existing tools and simulation software packages capable of integrating traditional gas turbine modules with electric subsystems, as well as simulating various faulty conditions in EAP relevant to PHM development. Key gaps in these tools are emphasized, drawing attention to areas that require further refinement and development. This comprehensive exploration aims to pave the way for future advancements in PHM tailored for the unique challenges posed by electric aircraft propulsion systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrognostics and Health Management for Electrified Aircraft Propulsion: State of the Art and Challenges
    typeJournal Paper
    journal volume147
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066598
    journal fristpage41018-1
    journal lastpage41018-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian