YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    FCGR-Net: A Novel Approach to Predict Fatigue Crack Growth Rate Behavior in Metals Using Machine Learning

    Source: Journal of Engineering Materials and Technology:;2025:;volume( 147 ):;issue: 004::page 41004-1
    Author:
    Mahesh, S.
    ,
    Anil Chandra, A. R.
    ,
    Ravikumar, L.
    ,
    Manjunatha, C. M.
    DOI: 10.1115/1.4068534
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: -
    • Download: (1.582Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      FCGR-Net: A Novel Approach to Predict Fatigue Crack Growth Rate Behavior in Metals Using Machine Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308233
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorMahesh, S.
    contributor authorAnil Chandra, A. R.
    contributor authorRavikumar, L.
    contributor authorManjunatha, C. M.
    date accessioned2025-08-20T09:24:38Z
    date available2025-08-20T09:24:38Z
    date copyright5/13/2025 12:00:00 AM
    date issued2025
    identifier issn0094-4289
    identifier othermats-24-1240.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308233
    description abstract-
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFCGR-Net: A Novel Approach to Predict Fatigue Crack Growth Rate Behavior in Metals Using Machine Learning
    typeJournal Paper
    journal volume147
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4068534
    journal fristpage41004-1
    journal lastpage41004-12
    page12
    treeJournal of Engineering Materials and Technology:;2025:;volume( 147 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian