Show simple item record

contributor authorMahesh, S.
contributor authorAnil Chandra, A. R.
contributor authorRavikumar, L.
contributor authorManjunatha, C. M.
date accessioned2025-08-20T09:24:38Z
date available2025-08-20T09:24:38Z
date copyright5/13/2025 12:00:00 AM
date issued2025
identifier issn0094-4289
identifier othermats-24-1240.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308233
description abstract-
publisherThe American Society of Mechanical Engineers (ASME)
titleFCGR-Net: A Novel Approach to Predict Fatigue Crack Growth Rate Behavior in Metals Using Machine Learning
typeJournal Paper
journal volume147
journal issue4
journal titleJournal of Engineering Materials and Technology
identifier doi10.1115/1.4068534
journal fristpage41004-1
journal lastpage41004-12
page12
treeJournal of Engineering Materials and Technology:;2025:;volume( 147 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record