YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Performance Enhancement With Melting Effect of Nickel Foam and MXene Nano-Enhanced Phase Change Material Composite-Based Thermal Energy Storages

    Source: Journal of Thermal Science and Engineering Applications:;2025:;volume( 017 ):;issue: 003::page 31004-1
    Author:
    Srivastava, Utkarsh
    ,
    Sahoo, Rashmi Rekha
    DOI: 10.1115/1.4067487
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This research explores the numerical investigation of melting processes in duplex and triplex tube latent heat thermal energy storage (LHTES) systems utilizing phase change material (PCM) enhanced with nickel foam and MXene nanoparticles. By incorporating a nickel foam/PCM/MXene (5% v/v) composite, the research scrutinizes the effects on melting characteristics, Stefan and Fourier numbers, and thermal behavior of both duplex tube thermal energy storage (DuT-TES) and triplex tube thermal energy storage (TrT-TES) configurations. A comprehensive analysis encompassing liquid fraction, melting temperature contours across varying melting durations, exergy destruction, exergetic efficiency, system efficiency, and the stored energy is conducted. The findings indicate that systems employing nickel foam/PCM–MXene composite exhibit superior performance compared to those utilizing nickel foam/PCM or pure PCM, resulting in a notable reduction in melting time. Furthermore, it is observed that the stored exergy of nickel foam/PCM composite surpasses that of pure cetyl alcohol PCM. In TrT-TES systems, melting with nickel foam/PCM composite occurs 58.82% faster than in DuT-TES systems. The stored energy of TrT-TES employing nickel foam/PCM and nickel foam/PCM/MXene composite is 4.55% and 3.69% greater, respectively, than that of DuT-TES systems. DuT-TES with nickel foam/PCM/MXene also achieves a 44.86% higher system efficiency at 90 s than nickel foam/PCM. Notably, the melting process with nickel foam/PCM/MXene in TrT-TES occurs 60.26% faster than in DuT-TES. Consequently, TrT-TES systems employing nickel foam/PCM/MXene composite demonstrate superior potential for latent heat thermal storage compared to DuT-TES systems.
    • Download: (1.265Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Performance Enhancement With Melting Effect of Nickel Foam and MXene Nano-Enhanced Phase Change Material Composite-Based Thermal Energy Storages

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306469
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorSrivastava, Utkarsh
    contributor authorSahoo, Rashmi Rekha
    date accessioned2025-04-21T10:34:25Z
    date available2025-04-21T10:34:25Z
    date copyright1/15/2025 12:00:00 AM
    date issued2025
    identifier issn1948-5085
    identifier othertsea_17_3_031004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306469
    description abstractThis research explores the numerical investigation of melting processes in duplex and triplex tube latent heat thermal energy storage (LHTES) systems utilizing phase change material (PCM) enhanced with nickel foam and MXene nanoparticles. By incorporating a nickel foam/PCM/MXene (5% v/v) composite, the research scrutinizes the effects on melting characteristics, Stefan and Fourier numbers, and thermal behavior of both duplex tube thermal energy storage (DuT-TES) and triplex tube thermal energy storage (TrT-TES) configurations. A comprehensive analysis encompassing liquid fraction, melting temperature contours across varying melting durations, exergy destruction, exergetic efficiency, system efficiency, and the stored energy is conducted. The findings indicate that systems employing nickel foam/PCM–MXene composite exhibit superior performance compared to those utilizing nickel foam/PCM or pure PCM, resulting in a notable reduction in melting time. Furthermore, it is observed that the stored exergy of nickel foam/PCM composite surpasses that of pure cetyl alcohol PCM. In TrT-TES systems, melting with nickel foam/PCM composite occurs 58.82% faster than in DuT-TES systems. The stored energy of TrT-TES employing nickel foam/PCM and nickel foam/PCM/MXene composite is 4.55% and 3.69% greater, respectively, than that of DuT-TES systems. DuT-TES with nickel foam/PCM/MXene also achieves a 44.86% higher system efficiency at 90 s than nickel foam/PCM. Notably, the melting process with nickel foam/PCM/MXene in TrT-TES occurs 60.26% faster than in DuT-TES. Consequently, TrT-TES systems employing nickel foam/PCM/MXene composite demonstrate superior potential for latent heat thermal storage compared to DuT-TES systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Performance Enhancement With Melting Effect of Nickel Foam and MXene Nano-Enhanced Phase Change Material Composite-Based Thermal Energy Storages
    typeJournal Paper
    journal volume17
    journal issue3
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4067487
    journal fristpage31004-1
    journal lastpage31004-11
    page11
    treeJournal of Thermal Science and Engineering Applications:;2025:;volume( 017 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian