YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Letters in Dynamic Systems and Control
    • View Item
    •   YE&T Library
    • ASME
    • ASME Letters in Dynamic Systems and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Multi-Fidelity Impedance Tuning for Human–Robot Cooperative Manipulation1

    Source: ASME Letters in Dynamic Systems and Control:;2024:;volume( 005 ):;issue: 001::page 11006-1
    Author:
    Lau, Ethan
    ,
    Srivastava, Vaibhav
    ,
    Bopardikar, Shaunak D.
    DOI: 10.1115/1.4066629
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We examine how a human–robot interaction (HRI) system may be designed when input–output data from previous experiments are available. Our objective is to learn an optimal impedance in the assistance design for a cooperative manipulation task with a new operator. Due to the variability between individuals, the design parameters that best suit one operator of the robot may not be the best parameters for another one. However, by incorporating historical data using a linear autoregressive (AR-1) Gaussian process, the search for a new operator’s optimal parameters can be accelerated. We lay out a framework for optimizing the human–robot cooperative manipulation that only requires input–output data. We characterize the learning performance using a notion called regret, establish how the AR-1 model improves the bound on the regret, and numerically illustrate this improvement in the context of a human–robot cooperative manipulation task. Furthermore, we show how our approach’s input–output nature provides robustness against modeling error through an additional numerical study.
    • Download: (469.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Multi-Fidelity Impedance Tuning for Human–Robot Cooperative Manipulation1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306411
    Collections
    • ASME Letters in Dynamic Systems and Control

    Show full item record

    contributor authorLau, Ethan
    contributor authorSrivastava, Vaibhav
    contributor authorBopardikar, Shaunak D.
    date accessioned2025-04-21T10:32:38Z
    date available2025-04-21T10:32:38Z
    date copyright10/16/2024 12:00:00 AM
    date issued2024
    identifier issn2689-6117
    identifier otheraldsc_5_1_011006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306411
    description abstractWe examine how a human–robot interaction (HRI) system may be designed when input–output data from previous experiments are available. Our objective is to learn an optimal impedance in the assistance design for a cooperative manipulation task with a new operator. Due to the variability between individuals, the design parameters that best suit one operator of the robot may not be the best parameters for another one. However, by incorporating historical data using a linear autoregressive (AR-1) Gaussian process, the search for a new operator’s optimal parameters can be accelerated. We lay out a framework for optimizing the human–robot cooperative manipulation that only requires input–output data. We characterize the learning performance using a notion called regret, establish how the AR-1 model improves the bound on the regret, and numerically illustrate this improvement in the context of a human–robot cooperative manipulation task. Furthermore, we show how our approach’s input–output nature provides robustness against modeling error through an additional numerical study.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn Multi-Fidelity Impedance Tuning for Human–Robot Cooperative Manipulation1
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleASME Letters in Dynamic Systems and Control
    identifier doi10.1115/1.4066629
    journal fristpage11006-1
    journal lastpage11006-7
    page7
    treeASME Letters in Dynamic Systems and Control:;2024:;volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian