YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Biomedical Polyurethane Material With Optimized Optical and Mechanical Properties Is Developed

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2024:;volume( 008 ):;issue: 002::page 21102-1
    Author:
    Abbas, Ibtisam
    ,
    Al-Jumaily, A. M.
    DOI: 10.1115/1.4066081
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This research aims to design and develop a novel polyurethane elastomer (PUE) material with potential for biomedical optical applications. The study investigates the influence of hard segment (HS) content on transparency and tensile strength to optimize optical and mechanical properties. A one-step polymerization method is employed to synthesize a series of PUEs based on polyester, poly (3-methyl-1,5-pentandioladipate) (PMPA), diisocyanate (4,4-methylene bis (phenyl isocyanate) (MDI)), and the chain extender 1,4 butanediol (BD). By varying the ratios of PMPA/BD/MDI, PUE samples with different HS concentrations are synthesized. Analytical techniques including infrared spectroscopy, refractometer, UV/visible spectrophotometer, and tensile tests confirm the chemical structure of the synthesized PMPAPUE materials and investigate refractive indices (n), transmission spectra, and Young's modulus (YM), respectively. Films (PUE-1, PUE-2, and PUE-3) prepared using solvent-casting techniques exhibit varying optical and mechanical properties. PUE-1, with low HS content, demonstrates excellent transparency, with n = 1.59 and 89.63% of total transmitted light, and possesses excellent elastic properties with a YM of 10.654 MPa and a high strain value of S = 303.7%, meeting lens material requirements, promising for biomedical optical applications. Conversely, PUE-2 and PUE-3, with high HS content, are translucent and stiffer materials exhibiting higher YM, suitable for polymer processing, and tissue engineering applications. The optimization of the material's properties was achieved by carefully tailoring the composition of HS and soft segments, raw material ratios, and optimizing reaction conditions.
    • Download: (1.535Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Biomedical Polyurethane Material With Optimized Optical and Mechanical Properties Is Developed

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306147
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorAbbas, Ibtisam
    contributor authorAl-Jumaily, A. M.
    date accessioned2025-04-21T10:25:03Z
    date available2025-04-21T10:25:03Z
    date copyright8/24/2024 12:00:00 AM
    date issued2024
    identifier issn2572-7958
    identifier otherjesmdt_008_02_021102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306147
    description abstractThis research aims to design and develop a novel polyurethane elastomer (PUE) material with potential for biomedical optical applications. The study investigates the influence of hard segment (HS) content on transparency and tensile strength to optimize optical and mechanical properties. A one-step polymerization method is employed to synthesize a series of PUEs based on polyester, poly (3-methyl-1,5-pentandioladipate) (PMPA), diisocyanate (4,4-methylene bis (phenyl isocyanate) (MDI)), and the chain extender 1,4 butanediol (BD). By varying the ratios of PMPA/BD/MDI, PUE samples with different HS concentrations are synthesized. Analytical techniques including infrared spectroscopy, refractometer, UV/visible spectrophotometer, and tensile tests confirm the chemical structure of the synthesized PMPAPUE materials and investigate refractive indices (n), transmission spectra, and Young's modulus (YM), respectively. Films (PUE-1, PUE-2, and PUE-3) prepared using solvent-casting techniques exhibit varying optical and mechanical properties. PUE-1, with low HS content, demonstrates excellent transparency, with n = 1.59 and 89.63% of total transmitted light, and possesses excellent elastic properties with a YM of 10.654 MPa and a high strain value of S = 303.7%, meeting lens material requirements, promising for biomedical optical applications. Conversely, PUE-2 and PUE-3, with high HS content, are translucent and stiffer materials exhibiting higher YM, suitable for polymer processing, and tissue engineering applications. The optimization of the material's properties was achieved by carefully tailoring the composition of HS and soft segments, raw material ratios, and optimizing reaction conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Biomedical Polyurethane Material With Optimized Optical and Mechanical Properties Is Developed
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4066081
    journal fristpage21102-1
    journal lastpage21102-10
    page10
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2024:;volume( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian