YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Ground Power Unit-3 Stirling Engine With Air as Working Fluid

    Source: Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy:;2024:;volume( 001 ):;issue: 002::page 21701-1
    Author:
    Singh, Vaibhav
    ,
    Kumar, Anil
    DOI: 10.1115/1.4066760
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The immediate need to mitigate climate change presents a chance to move civilization in the direction of a more sustainable future. A Stirling engine has multifuel capabilities such as biomass, solar thermal, and waste heat and hence can contribute significantly to the energy mix of fuel sources. The most common working fluids for Stirling engines are hydrogen, helium, and air, with air being the least expensive and safest. Studies analyzing Stirling engine performance with 3D CFD are limited, and even fewer use air as the working fluid. This research presents a novel 3D CFD analysis of the Ground Power Unit-3 (GPU-3) Stirling engine with air as the working fluid using ansys fluent. The fluid domain was modeled in SolidWorks and one-eighth of the geometry was used for simulation with realizable enhanced wall treatment (EWT) k–ε as an eddy viscosity model. On average, there was a reduction in power output by 50% when air was used as working fluid against helium as working fluid. Engine's power output decreases as the engine's speed increases. The impinging effect contributes to vortex formation and temperature variation within the engine components was nonsinusoidal, this is in line with similar studies performed on GPU-3 Stirling engine.
    • Download: (981.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Ground Power Unit-3 Stirling Engine With Air as Working Fluid

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306142
    Collections
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy

    Show full item record

    contributor authorSingh, Vaibhav
    contributor authorKumar, Anil
    date accessioned2025-04-21T10:24:55Z
    date available2025-04-21T10:24:55Z
    date copyright11/25/2024 12:00:00 AM
    date issued2024
    identifier issn2997-0253
    identifier otherjerta_1_2_021701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306142
    description abstractThe immediate need to mitigate climate change presents a chance to move civilization in the direction of a more sustainable future. A Stirling engine has multifuel capabilities such as biomass, solar thermal, and waste heat and hence can contribute significantly to the energy mix of fuel sources. The most common working fluids for Stirling engines are hydrogen, helium, and air, with air being the least expensive and safest. Studies analyzing Stirling engine performance with 3D CFD are limited, and even fewer use air as the working fluid. This research presents a novel 3D CFD analysis of the Ground Power Unit-3 (GPU-3) Stirling engine with air as the working fluid using ansys fluent. The fluid domain was modeled in SolidWorks and one-eighth of the geometry was used for simulation with realizable enhanced wall treatment (EWT) k–ε as an eddy viscosity model. On average, there was a reduction in power output by 50% when air was used as working fluid against helium as working fluid. Engine's power output decreases as the engine's speed increases. The impinging effect contributes to vortex formation and temperature variation within the engine components was nonsinusoidal, this is in line with similar studies performed on GPU-3 Stirling engine.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimulation of Ground Power Unit-3 Stirling Engine With Air as Working Fluid
    typeJournal Paper
    journal volume1
    journal issue2
    journal titleJournal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    identifier doi10.1115/1.4066760
    journal fristpage21701-1
    journal lastpage21701-10
    page10
    treeJournal of Energy Resources Technology, Part A: Sustainable and Renewable Energy:;2024:;volume( 001 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian