YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interplay Between Unburned Emissions and NOx Emissions From a Dual Swirl Hydrogen Air Injector

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 006::page 61013-1
    Author:
    Magnes, Hervé
    ,
    Vilespy, Martin
    ,
    Selle, Laurent
    ,
    Poinsot, Thierry
    ,
    Schuller, Thierry
    DOI: 10.1115/1.4066717
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: OH planar laser induced fluorescence (OH-PLIF) and particle image velocimetry (PIV) are employed to analyze the structure of hydrogen/air flames stabilized by a dual swirl injection system under globally lean and atmospheric conditions with preheat air temperature varied from ambient up to 673 K. The flames exhibit two distinct reaction branches. The first, located in the central recirculation zone (CRZ), is a diffusion-controlled reaction layer characterized by a relatively large thickness associated with low strain rates. The second branch, stabilized in the shear layer of the swirling jet, is strongly influenced by large coherent structures. Depending on operating conditions, this front may adopt either the form of a fully diffusive strained reaction layer anchored to the hydrogen injector lip or a lifted diffusion front with a leading-edge flame evolving into a partially premixed flame at high air injection velocities. Flue gas analysis indicates NOx emission levels, typically below 10 ppm at 15% O2, for sufficiently large air injection velocities. Air preheating barely increases NOx emissions at lean operating conditions. The injector operational range is constrained only by the ultralean blowout limit reached for global equivalence ratios below 0.02. Furthermore, it demonstrates remarkable resilience to large and rapid drop in fuel flow rate. However, combustion efficiency drops close to the lean blowout (LBO) limit due to intermittent fragmentation of the flame wings that progresses further upstream as the equivalence ratio drops. The results demonstrate that fragmentation arises from the combined effects of a temperature drop in the central recirculation zone and the flame wings being exposed to high shear stress. Additionally, it is shown that combustion efficiency under ultralean conditions improves significantly with an increase in air preheat temperature.
    • Download: (5.455Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interplay Between Unburned Emissions and NOx Emissions From a Dual Swirl Hydrogen Air Injector

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306104
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMagnes, Hervé
    contributor authorVilespy, Martin
    contributor authorSelle, Laurent
    contributor authorPoinsot, Thierry
    contributor authorSchuller, Thierry
    date accessioned2025-04-21T10:23:50Z
    date available2025-04-21T10:23:50Z
    date copyright11/25/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_06_061013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306104
    description abstractOH planar laser induced fluorescence (OH-PLIF) and particle image velocimetry (PIV) are employed to analyze the structure of hydrogen/air flames stabilized by a dual swirl injection system under globally lean and atmospheric conditions with preheat air temperature varied from ambient up to 673 K. The flames exhibit two distinct reaction branches. The first, located in the central recirculation zone (CRZ), is a diffusion-controlled reaction layer characterized by a relatively large thickness associated with low strain rates. The second branch, stabilized in the shear layer of the swirling jet, is strongly influenced by large coherent structures. Depending on operating conditions, this front may adopt either the form of a fully diffusive strained reaction layer anchored to the hydrogen injector lip or a lifted diffusion front with a leading-edge flame evolving into a partially premixed flame at high air injection velocities. Flue gas analysis indicates NOx emission levels, typically below 10 ppm at 15% O2, for sufficiently large air injection velocities. Air preheating barely increases NOx emissions at lean operating conditions. The injector operational range is constrained only by the ultralean blowout limit reached for global equivalence ratios below 0.02. Furthermore, it demonstrates remarkable resilience to large and rapid drop in fuel flow rate. However, combustion efficiency drops close to the lean blowout (LBO) limit due to intermittent fragmentation of the flame wings that progresses further upstream as the equivalence ratio drops. The results demonstrate that fragmentation arises from the combined effects of a temperature drop in the central recirculation zone and the flame wings being exposed to high shear stress. Additionally, it is shown that combustion efficiency under ultralean conditions improves significantly with an increase in air preheat temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInterplay Between Unburned Emissions and NOx Emissions From a Dual Swirl Hydrogen Air Injector
    typeJournal Paper
    journal volume147
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066717
    journal fristpage61013-1
    journal lastpage61013-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian