YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Data Assimilation in Cold Flow Experiments on an Industrial Thermoacoustic Rig

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 005::page 51008-1
    Author:
    Zheng, Jingquan
    ,
    Fischer, André
    ,
    Lahiri, Claus
    ,
    Yoko, Matthew
    ,
    Juniper, Matthew P.
    DOI: 10.1115/1.4066611
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We assimilate experimental data from nonreacting flow in the SCARLET (SCaled Acoustic Rig for Low Emission Technologies) test rig using physics-based Bayesian inference. We model the complex geometry of the combustor with a qualitatively accurate one-dimensional low-order network model. At the first level of Bayesian inference, we assimilate experimental data to optimize the parameter values by minimizing the negative log posterior probability of the parameters of each model, given the prior assumptions and the data. At the second level of inference, we find the best model by comparing the marginal likelihoods of candidate models. We apply Laplace's method accelerated with first and second order adjoint methods to assimilate data efficiently. The first order adjoint is used for rapid data assimilation and optimization. The first and second order adjoints are used for inverse uncertainty quantification. We propose six candidate models for the burner and select the model with most evidence given the data. This produces an improved physical model of the rig, with known uncertainties.
    • Download: (3.369Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Data Assimilation in Cold Flow Experiments on an Industrial Thermoacoustic Rig

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306097
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZheng, Jingquan
    contributor authorFischer, André
    contributor authorLahiri, Claus
    contributor authorYoko, Matthew
    contributor authorJuniper, Matthew P.
    date accessioned2025-04-21T10:23:38Z
    date available2025-04-21T10:23:38Z
    date copyright11/14/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_05_051008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306097
    description abstractWe assimilate experimental data from nonreacting flow in the SCARLET (SCaled Acoustic Rig for Low Emission Technologies) test rig using physics-based Bayesian inference. We model the complex geometry of the combustor with a qualitatively accurate one-dimensional low-order network model. At the first level of Bayesian inference, we assimilate experimental data to optimize the parameter values by minimizing the negative log posterior probability of the parameters of each model, given the prior assumptions and the data. At the second level of inference, we find the best model by comparing the marginal likelihoods of candidate models. We apply Laplace's method accelerated with first and second order adjoint methods to assimilate data efficiently. The first order adjoint is used for rapid data assimilation and optimization. The first and second order adjoints are used for inverse uncertainty quantification. We propose six candidate models for the burner and select the model with most evidence given the data. This produces an improved physical model of the rig, with known uncertainties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBayesian Data Assimilation in Cold Flow Experiments on an Industrial Thermoacoustic Rig
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066611
    journal fristpage51008-1
    journal lastpage51008-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian