YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Low Mach Preconditioned Harmonic Balance Solver for Cavity Flutter Computations

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 002::page 21029-1
    Author:
    Sivel, Pierre
    ,
    Frey, Christian
    ,
    Kersken, Hans-Peter
    ,
    Kügeler, Edmund
    DOI: 10.1115/1.4066537
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Labyrinth seal flutter is a critical phenomenon in turbomachinery, as it can lead to severe structural vibrations and potential component damage. Accurate prediction and mitigation of flutter are paramount to ensuring the reliability and performance of modern turbomachinery systems. This paper explores the numerical computation of a labyrinth seal flutter test case using a low Mach preconditioned harmonic balance (HB) solver and investigates how this approach can improve the accuracy and response time of flutter computations. HB solvers have gained prominence in turbomachinery computations for their ability to efficiently capture unsteady flow phenomena and significantly reduce computational time compared to time-domain analyses. In labyrinth seals, however, the flow is often characterized by low Mach numbers, and preconditioning for these conditions has been shown to significantly improve convergence and accuracy. The goal of this paper is to demonstrate how to implement low Mach preconditioning in a HB solver in the frequency domain. We employ iterative preconditioning to alleviate the stiffness associated with density-based solvers under low Mach conditions and analyze the effect of the preconditioning parameters on the convergence rate. Furthermore, we address inaccuracies linked to the classical Roe solver in low Mach scenarios by adapting it to the low Mach preconditioned governing equations. Through the combined utilization of iterative preconditioning and a preconditioned Roe solver, this study aims to improve convergence rates and the overall quality of flutter predictions. We demonstrate the method with an academic labyrinth seal test case originally presented by Corral et al. (“Higher Order Conceptual Model for Labyrinth Seal Flutter,” ASME J. Turbomach., 143(7), p. 071006). While previous investigations have primarily relied on linearized frequency domain solvers and reduce-order models, in this research a preconditioned HB solver is applied to this test case.
    • Download: (1.990Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Low Mach Preconditioned Harmonic Balance Solver for Cavity Flutter Computations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306081
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSivel, Pierre
    contributor authorFrey, Christian
    contributor authorKersken, Hans-Peter
    contributor authorKügeler, Edmund
    date accessioned2025-04-21T10:23:17Z
    date available2025-04-21T10:23:17Z
    date copyright10/26/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_02_021029.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306081
    description abstractLabyrinth seal flutter is a critical phenomenon in turbomachinery, as it can lead to severe structural vibrations and potential component damage. Accurate prediction and mitigation of flutter are paramount to ensuring the reliability and performance of modern turbomachinery systems. This paper explores the numerical computation of a labyrinth seal flutter test case using a low Mach preconditioned harmonic balance (HB) solver and investigates how this approach can improve the accuracy and response time of flutter computations. HB solvers have gained prominence in turbomachinery computations for their ability to efficiently capture unsteady flow phenomena and significantly reduce computational time compared to time-domain analyses. In labyrinth seals, however, the flow is often characterized by low Mach numbers, and preconditioning for these conditions has been shown to significantly improve convergence and accuracy. The goal of this paper is to demonstrate how to implement low Mach preconditioning in a HB solver in the frequency domain. We employ iterative preconditioning to alleviate the stiffness associated with density-based solvers under low Mach conditions and analyze the effect of the preconditioning parameters on the convergence rate. Furthermore, we address inaccuracies linked to the classical Roe solver in low Mach scenarios by adapting it to the low Mach preconditioned governing equations. Through the combined utilization of iterative preconditioning and a preconditioned Roe solver, this study aims to improve convergence rates and the overall quality of flutter predictions. We demonstrate the method with an academic labyrinth seal test case originally presented by Corral et al. (“Higher Order Conceptual Model for Labyrinth Seal Flutter,” ASME J. Turbomach., 143(7), p. 071006). While previous investigations have primarily relied on linearized frequency domain solvers and reduce-order models, in this research a preconditioned HB solver is applied to this test case.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Low Mach Preconditioned Harmonic Balance Solver for Cavity Flutter Computations
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066537
    journal fristpage21029-1
    journal lastpage21029-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian