YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimizing Supercritical Carbon Dioxide Cycles Performance With Respect to Split Ratio and Intermediate Pressure

    Source: ASME Open Journal of Engineering:;2024:;volume( 003 )::page 31026-1
    Author:
    Tatli, Akif Eren
    ,
    You, Dongchuan
    ,
    Metghalchi, Hameed
    DOI: 10.1115/1.4066683
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Supercritical carbon dioxide power cycles are getting more attention every day due to their high efficiencies. This study has examined determination of split ratio and intermediate pressure for maximum efficiency in various supercritical carbon dioxide recompression cycle configurations. Five cycle variants have been analyzed: reheating, partial cooling, partial cooling with reheating, intercooling, and intercooling with reheating. Partial derivatives of efficiency with respect to split ratio and intermediate pressure have been determined and set equal to zero to find optimum split ratio and intermediate pressure. This process has isolated the system's response to these two key parameters while keeping other cycle variables constant. Across all configurations, following parameters have been fixed: inlet temperatures of 550 °C and 32 °C for turbine and compressor components, an energy source temperature of 600 °C, an ambient temperature of 27 °C, and pressure limits of 75 bar and 200 bar. Optimization results show that recompression–reheating cycle achieves the highest efficiency of 39.62% at an optimum intermediate pressure of 139.43 bar and a split ratio of 71.1%. Recompression–partial cooling cycle exhibits the lowest maximum efficiency at 37.35%, with an optimum intermediate pressure of 85.87 bar and a split ratio of 62.6%. Recompression–partial cooling with reheating cycle reaches a maximum efficiency of 37.98% at an optimum intermediate pressure of 123.94 bar and a split ratio of 67.2%, while the intercooling cycle and intercooling with reheating cycle attain 39.57% at an optimum intermediate pressure of 80.03 bar and a split ratio of 66.4% and 39.59% at an optimum intermediate pressure of 116.1 bar and a split ratio of 69.2%, respectively. Additionally, exergy destruction has been calculated for all components of the system and it is related to thermal efficiency of the cycle.
    • Download: (940.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimizing Supercritical Carbon Dioxide Cycles Performance With Respect to Split Ratio and Intermediate Pressure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306029
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorTatli, Akif Eren
    contributor authorYou, Dongchuan
    contributor authorMetghalchi, Hameed
    date accessioned2025-04-21T10:21:52Z
    date available2025-04-21T10:21:52Z
    date copyright10/11/2024 12:00:00 AM
    date issued2024
    identifier issn2770-3495
    identifier otheraoje_3_031026.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306029
    description abstractSupercritical carbon dioxide power cycles are getting more attention every day due to their high efficiencies. This study has examined determination of split ratio and intermediate pressure for maximum efficiency in various supercritical carbon dioxide recompression cycle configurations. Five cycle variants have been analyzed: reheating, partial cooling, partial cooling with reheating, intercooling, and intercooling with reheating. Partial derivatives of efficiency with respect to split ratio and intermediate pressure have been determined and set equal to zero to find optimum split ratio and intermediate pressure. This process has isolated the system's response to these two key parameters while keeping other cycle variables constant. Across all configurations, following parameters have been fixed: inlet temperatures of 550 °C and 32 °C for turbine and compressor components, an energy source temperature of 600 °C, an ambient temperature of 27 °C, and pressure limits of 75 bar and 200 bar. Optimization results show that recompression–reheating cycle achieves the highest efficiency of 39.62% at an optimum intermediate pressure of 139.43 bar and a split ratio of 71.1%. Recompression–partial cooling cycle exhibits the lowest maximum efficiency at 37.35%, with an optimum intermediate pressure of 85.87 bar and a split ratio of 62.6%. Recompression–partial cooling with reheating cycle reaches a maximum efficiency of 37.98% at an optimum intermediate pressure of 123.94 bar and a split ratio of 67.2%, while the intercooling cycle and intercooling with reheating cycle attain 39.57% at an optimum intermediate pressure of 80.03 bar and a split ratio of 66.4% and 39.59% at an optimum intermediate pressure of 116.1 bar and a split ratio of 69.2%, respectively. Additionally, exergy destruction has been calculated for all components of the system and it is related to thermal efficiency of the cycle.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimizing Supercritical Carbon Dioxide Cycles Performance With Respect to Split Ratio and Intermediate Pressure
    typeJournal Paper
    journal volume3
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4066683
    journal fristpage31026-1
    journal lastpage31026-10
    page10
    treeASME Open Journal of Engineering:;2024:;volume( 003 )
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian