YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design-Point Techno-Economics of Brayton Cycle PTES for Combined Heat and Power

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 002::page 21008-1
    Author:
    Neises, Ty
    ,
    McTigue, Joshua
    DOI: 10.1115/1.4066256
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pumped thermal energy storage (PTES) systems are grid batteries that use heat pumps to create both hot and cold thermal energy stores when there is excess electricity and then use a power cycle to convert the thermal energy into electricity when there is demand for electricity. In normal operation, Joule–Brayton PTES discharges low-grade heat at temperatures useful for thermal energy consumers like district and industrial heating. Furthermore, PTES designs, like conventional combined heat and power (CHP) technology, can be modified to sacrifice some round-trip efficiency (RTE) to increase the temperature of heat rejection. This paper uses design-point performance and cost models that provide a detailed understanding of the efficiency and cost tradeoffs of rejecting heat at various temperatures in ideal-gas Brayton PTES configurations. First, we keep the heat rejection in its nominal location in the PTES system: in the discharge cycle after the low-pressure exit of the recuperator before the cold-storage heat exchanger. Next, we move the heat rejection to the discharge turbine exit. We define design-point metrics that isolate both the cost and performance penalty associated with the hotter heat rejection and attribute it exclusively to the heat economic metrics. Finally, we estimate the performance of electric heater technology to generate heat at equivalent temperatures. We find that the levelized cost of heat (LCOH), including the cost of thermal energy storage (TES) buffering the PTES and heat off-taker, compares favorably versus electric technologies and is less than the cost of natural gas for low temperature scenarios and competitive with the cost of natural gas in some regions of the contiguous U.S. in high temperature scenarios.
    • Download: (2.492Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design-Point Techno-Economics of Brayton Cycle PTES for Combined Heat and Power

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305871
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorNeises, Ty
    contributor authorMcTigue, Joshua
    date accessioned2025-04-21T10:17:11Z
    date available2025-04-21T10:17:11Z
    date copyright9/26/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_02_021008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305871
    description abstractPumped thermal energy storage (PTES) systems are grid batteries that use heat pumps to create both hot and cold thermal energy stores when there is excess electricity and then use a power cycle to convert the thermal energy into electricity when there is demand for electricity. In normal operation, Joule–Brayton PTES discharges low-grade heat at temperatures useful for thermal energy consumers like district and industrial heating. Furthermore, PTES designs, like conventional combined heat and power (CHP) technology, can be modified to sacrifice some round-trip efficiency (RTE) to increase the temperature of heat rejection. This paper uses design-point performance and cost models that provide a detailed understanding of the efficiency and cost tradeoffs of rejecting heat at various temperatures in ideal-gas Brayton PTES configurations. First, we keep the heat rejection in its nominal location in the PTES system: in the discharge cycle after the low-pressure exit of the recuperator before the cold-storage heat exchanger. Next, we move the heat rejection to the discharge turbine exit. We define design-point metrics that isolate both the cost and performance penalty associated with the hotter heat rejection and attribute it exclusively to the heat economic metrics. Finally, we estimate the performance of electric heater technology to generate heat at equivalent temperatures. We find that the levelized cost of heat (LCOH), including the cost of thermal energy storage (TES) buffering the PTES and heat off-taker, compares favorably versus electric technologies and is less than the cost of natural gas for low temperature scenarios and competitive with the cost of natural gas in some regions of the contiguous U.S. in high temperature scenarios.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign-Point Techno-Economics of Brayton Cycle PTES for Combined Heat and Power
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066256
    journal fristpage21008-1
    journal lastpage21008-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian