YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pressure Gain Combustion for Gas Turbines: Analysis of a Fully Coupled Engine Model

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 002::page 21003-1
    Author:
    Klein, Rupert
    ,
    Nadolski, Maikel
    ,
    Zenker, Christian
    ,
    Oevermann, Michael
    ,
    Paschereit, Christian Oliver
    DOI: 10.1115/1.4066348
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The “Shockless Explosion Combustion” (SEC) concept for gas turbine combustors, introduced in 2014, approximates constant volume combustion (CVC) by harnessing acoustic confinement of auto-igniting gas packets. The resulting pressure waves simultaneously transmit combustion energy to a turbine plenum and facilitate the combustor's recharging against an average pressure gain. Challenges in actualizing an SEC-driven gas turbine include (i) the creation of charge stratifications for nearly homogeneous auto-ignition, (ii) protecting the turbocomponents from combustion-induced pressure fluctuations, (iii) providing evidence that efficiency gains comparable to those of CVC over deflagrative combustion can be realized, and (iv) designing an effective one-way intake valve. This work addresses challenges (i)–(iii) utilizing computational engine models incorporating a quasi-one-dimensional combustor, zero- and two-dimensional (2D) compressor and turbine plena, and quasi-stationary turbocomponents. Two SEC operational modes are identified which fire at roughly one and two times the combustors' acoustic frequencies. Results for SEC-driven gas turbines with compressor pressure ratios of 6:1 and 20:1 reveal 1.5-fold mean pressure gains across the combustors. Assuming ideally efficient compressors and turbines, efficiency gains over engines with deflagration-based combustors of 30% and 18% are realized, respectively. With absolute values of 52% and 66%, the obtained efficiencies are close to the theoretical Humphrey cycle efficiencies of 54% and 65% for the mentioned precompression ratios. Detailed thermodynamic cycle analyses for individual gas parcels suggest that there is room for further efficiency gains through optimized plenum and combustor designs.
    • Download: (5.230Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pressure Gain Combustion for Gas Turbines: Analysis of a Fully Coupled Engine Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305692
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKlein, Rupert
    contributor authorNadolski, Maikel
    contributor authorZenker, Christian
    contributor authorOevermann, Michael
    contributor authorPaschereit, Christian Oliver
    date accessioned2025-04-21T10:11:53Z
    date available2025-04-21T10:11:53Z
    date copyright9/26/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_02_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305692
    description abstractThe “Shockless Explosion Combustion” (SEC) concept for gas turbine combustors, introduced in 2014, approximates constant volume combustion (CVC) by harnessing acoustic confinement of auto-igniting gas packets. The resulting pressure waves simultaneously transmit combustion energy to a turbine plenum and facilitate the combustor's recharging against an average pressure gain. Challenges in actualizing an SEC-driven gas turbine include (i) the creation of charge stratifications for nearly homogeneous auto-ignition, (ii) protecting the turbocomponents from combustion-induced pressure fluctuations, (iii) providing evidence that efficiency gains comparable to those of CVC over deflagrative combustion can be realized, and (iv) designing an effective one-way intake valve. This work addresses challenges (i)–(iii) utilizing computational engine models incorporating a quasi-one-dimensional combustor, zero- and two-dimensional (2D) compressor and turbine plena, and quasi-stationary turbocomponents. Two SEC operational modes are identified which fire at roughly one and two times the combustors' acoustic frequencies. Results for SEC-driven gas turbines with compressor pressure ratios of 6:1 and 20:1 reveal 1.5-fold mean pressure gains across the combustors. Assuming ideally efficient compressors and turbines, efficiency gains over engines with deflagration-based combustors of 30% and 18% are realized, respectively. With absolute values of 52% and 66%, the obtained efficiencies are close to the theoretical Humphrey cycle efficiencies of 54% and 65% for the mentioned precompression ratios. Detailed thermodynamic cycle analyses for individual gas parcels suggest that there is room for further efficiency gains through optimized plenum and combustor designs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePressure Gain Combustion for Gas Turbines: Analysis of a Fully Coupled Engine Model
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066348
    journal fristpage21003-1
    journal lastpage21003-26
    page26
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian