YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical and Experimental Study of Heat Transfer in a Two-Channel Flat Plate Solar Air Collector

    Source: Journal of Solar Energy Engineering:;2024:;volume( 147 ):;issue: 002::page 21005-1
    Author:
    Álvarez, Benjamin
    ,
    Arce, Jesús
    ,
    Chávez, Yvonne
    ,
    Lira, Leonel
    DOI: 10.1115/1.4066302
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this article, a theoretical–experimental study was conducted on a two-channel solar air collector (SAC-2C). For the experimental study, a prototype of the SAC-2C was designed, built, and instrumented with dimensions of 1.860 m in length, 0.605 m in width, and featuring two air channels of 5.5 mm and 5 mm thick each, respectively. The collector operates via forced convection and was positioned at an inclination angle of 18.88 deg at the Tecnológico Nacional de México CENIDET campus (TecNM/CENIDET) located in Cuernavaca, Morelos, Mexico. For the theoretical analysis, the method of global energy balances in two dimensions (2D) and under transient conditions was applied. Temperature differences of up to 3.0∘C are observed with respect to mathematical models that do not consider heat conduction terms in solid elements. These differences are accentuated in the glass cover. Furthermore, altitude’s impact on air density calculations could influence theoretical temperature profiles up to 3.0∘C. The theoretical results of the numerical model were validated with the information obtained from the experimental tests, which showed good similarity. It was observed that the elements of SAC-2C are sensitive to sudden changes in meteorological conditions. The system’s response time is not only associated with the characteristics of the materials but also with the thermal bridges between the absorber plate and the casing. The calculation of the appropriate heat transfer coefficients allowed the evaluation of energy gains or losses in the SAC-2C collector.
    • Download: (1.813Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical and Experimental Study of Heat Transfer in a Two-Channel Flat Plate Solar Air Collector

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305574
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorÁlvarez, Benjamin
    contributor authorArce, Jesús
    contributor authorChávez, Yvonne
    contributor authorLira, Leonel
    date accessioned2025-04-21T10:08:14Z
    date available2025-04-21T10:08:14Z
    date copyright9/13/2024 12:00:00 AM
    date issued2024
    identifier issn0199-6231
    identifier othersol_147_2_021005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305574
    description abstractIn this article, a theoretical–experimental study was conducted on a two-channel solar air collector (SAC-2C). For the experimental study, a prototype of the SAC-2C was designed, built, and instrumented with dimensions of 1.860 m in length, 0.605 m in width, and featuring two air channels of 5.5 mm and 5 mm thick each, respectively. The collector operates via forced convection and was positioned at an inclination angle of 18.88 deg at the Tecnológico Nacional de México CENIDET campus (TecNM/CENIDET) located in Cuernavaca, Morelos, Mexico. For the theoretical analysis, the method of global energy balances in two dimensions (2D) and under transient conditions was applied. Temperature differences of up to 3.0∘C are observed with respect to mathematical models that do not consider heat conduction terms in solid elements. These differences are accentuated in the glass cover. Furthermore, altitude’s impact on air density calculations could influence theoretical temperature profiles up to 3.0∘C. The theoretical results of the numerical model were validated with the information obtained from the experimental tests, which showed good similarity. It was observed that the elements of SAC-2C are sensitive to sudden changes in meteorological conditions. The system’s response time is not only associated with the characteristics of the materials but also with the thermal bridges between the absorber plate and the casing. The calculation of the appropriate heat transfer coefficients allowed the evaluation of energy gains or losses in the SAC-2C collector.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical and Experimental Study of Heat Transfer in a Two-Channel Flat Plate Solar Air Collector
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4066302
    journal fristpage21005-1
    journal lastpage21005-16
    page16
    treeJournal of Solar Energy Engineering:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian