YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Design of Assembling Robot Considering Different Limb Topologies and Layouts

    Source: Journal of Mechanical Design:;2024:;volume( 147 ):;issue: 001::page 13305-1
    Author:
    Lian, Binbin
    ,
    Guo, Jinhua
    ,
    He, Zhiyuan
    ,
    Song, Yimin
    DOI: 10.1115/1.4065999
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A class of 5 degree-of-freedom (DoF) hybrid robots consisting of one translational and two rotational (1T2R) parallel module and 2 T serial module is presented for assembling in the aircraft cabin. The 1T2R parallel modules are with three limb topologies (PRS, RRS, and internal closed loop) and two layouts (symmetrical and “T” shape). Herein, P, R, and S denote prismatic, rotational, and spherical joints. This article presents the multi-objective optimization of the hybrid robot regarding different limb topology, limb layout, and corresponding dimensions as design variables. Considering demands from the in-cabin assembling, kinematic, linear stiffness along z-axis and total mass of the robot are the objectives. The Pareto fronts and cooperative equilibrium point (CEP) indicate that the robot with 3-PRS and 3-RRS parallel module have better performances than the one with internal closed loop. The overall performances of robot with symmetrical layout are superior than the one with “T” shape layout. In addition, two optimization methods are compared. One is to separately optimize six robots with specific topology and layout. The other is to optimize all design variables in a model. It is found that six robots have their own performance zones. Therefore, final optimums of two methods are close to each other. But optimization in one model is able to eliminate unfeasible topologies in the early stage of searching and thus is more efficient. Optimal module is 3-PRS with symmetrical layout. Experiments on the physical prototype validate performances of the optimal robot.
    • Download: (1.320Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Design of Assembling Robot Considering Different Limb Topologies and Layouts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305396
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorLian, Binbin
    contributor authorGuo, Jinhua
    contributor authorHe, Zhiyuan
    contributor authorSong, Yimin
    date accessioned2025-04-21T10:03:20Z
    date available2025-04-21T10:03:20Z
    date copyright8/21/2024 12:00:00 AM
    date issued2024
    identifier issn1050-0472
    identifier othermd_147_1_013305.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305396
    description abstractA class of 5 degree-of-freedom (DoF) hybrid robots consisting of one translational and two rotational (1T2R) parallel module and 2 T serial module is presented for assembling in the aircraft cabin. The 1T2R parallel modules are with three limb topologies (PRS, RRS, and internal closed loop) and two layouts (symmetrical and “T” shape). Herein, P, R, and S denote prismatic, rotational, and spherical joints. This article presents the multi-objective optimization of the hybrid robot regarding different limb topology, limb layout, and corresponding dimensions as design variables. Considering demands from the in-cabin assembling, kinematic, linear stiffness along z-axis and total mass of the robot are the objectives. The Pareto fronts and cooperative equilibrium point (CEP) indicate that the robot with 3-PRS and 3-RRS parallel module have better performances than the one with internal closed loop. The overall performances of robot with symmetrical layout are superior than the one with “T” shape layout. In addition, two optimization methods are compared. One is to separately optimize six robots with specific topology and layout. The other is to optimize all design variables in a model. It is found that six robots have their own performance zones. Therefore, final optimums of two methods are close to each other. But optimization in one model is able to eliminate unfeasible topologies in the early stage of searching and thus is more efficient. Optimal module is 3-PRS with symmetrical layout. Experiments on the physical prototype validate performances of the optimal robot.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Design of Assembling Robot Considering Different Limb Topologies and Layouts
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4065999
    journal fristpage13305-1
    journal lastpage13305-14
    page14
    treeJournal of Mechanical Design:;2024:;volume( 147 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian