YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study on the Influence Mechanism of Spoiler on Flow and Combustion Process in Rotary Engine Cylinder

    Source: Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy:;2024:;volume( 001 ):;issue: 001::page 11704-1
    Author:
    Li, Liangyu
    ,
    Guo, Zihe
    ,
    Zou, Run
    ,
    Su, Tiexiong
    DOI: 10.1115/1.4066521
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The spoiler is vital for optimizing rotary engines, yet its impact on the flow and combustion process within the cylinder remains ambiguous, thereby impeding the optimization efforts for rotary engines. This article, by analyzing the motion of the rotary, discovers a form of high-speed local gas flow within the cylinder due to local pressure differences resulting from interactions among the combustion chamber, cylinder body, and spoiler structure. This phenomenon is named “pressure differential flow” to differentiate it from the forced flow induced by the spoiler. Using mathematical models and three-dimensional simulations, we analyze the intensity of pressure differential flow at various spoiler heights and its regulatory effects on the flow and combustion characteristics within the cylinder. The results indicate that the flow caused by the spoiler in the cylinder is primarily divided into forced flow and pressure differential flow, with the intensity of the latter increasing as the spoiler height increases. When the spoiler height is greater than 75% of the maximum height, the pressure difference flow becomes more apparent, with both forced flow and pressure difference flow coexisting in the cylinder; when the spoiler height is less than 75% of the maximum height, the pressure difference flow is less noticeable, and the forced flow caused by the spoiler dominates. Pressure differential flow can reduce ignition delay and increase the maximum cylinder pressure, but it can also delay ignition timing and reduce combustion stability.
    • Download: (1.567Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study on the Influence Mechanism of Spoiler on Flow and Combustion Process in Rotary Engine Cylinder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305236
    Collections
    • Journal of Energy Resources Technology, Part A: Sustainable and Renewable Energy

    Show full item record

    contributor authorLi, Liangyu
    contributor authorGuo, Zihe
    contributor authorZou, Run
    contributor authorSu, Tiexiong
    date accessioned2025-04-21T09:58:45Z
    date available2025-04-21T09:58:45Z
    date copyright11/22/2024 12:00:00 AM
    date issued2024
    identifier issn2997-0253
    identifier otherjerta_1_1_011704.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305236
    description abstractThe spoiler is vital for optimizing rotary engines, yet its impact on the flow and combustion process within the cylinder remains ambiguous, thereby impeding the optimization efforts for rotary engines. This article, by analyzing the motion of the rotary, discovers a form of high-speed local gas flow within the cylinder due to local pressure differences resulting from interactions among the combustion chamber, cylinder body, and spoiler structure. This phenomenon is named “pressure differential flow” to differentiate it from the forced flow induced by the spoiler. Using mathematical models and three-dimensional simulations, we analyze the intensity of pressure differential flow at various spoiler heights and its regulatory effects on the flow and combustion characteristics within the cylinder. The results indicate that the flow caused by the spoiler in the cylinder is primarily divided into forced flow and pressure differential flow, with the intensity of the latter increasing as the spoiler height increases. When the spoiler height is greater than 75% of the maximum height, the pressure difference flow becomes more apparent, with both forced flow and pressure difference flow coexisting in the cylinder; when the spoiler height is less than 75% of the maximum height, the pressure difference flow is less noticeable, and the forced flow caused by the spoiler dominates. Pressure differential flow can reduce ignition delay and increase the maximum cylinder pressure, but it can also delay ignition timing and reduce combustion stability.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStudy on the Influence Mechanism of Spoiler on Flow and Combustion Process in Rotary Engine Cylinder
    typeJournal Paper
    journal volume1
    journal issue1
    journal titleJournal of Energy Resources Technology, Part A: Sustainable and Renewable Energy
    identifier doi10.1115/1.4066521
    journal fristpage11704-1
    journal lastpage11704-13
    page13
    treeJournal of Energy Resources Technology, Part A: Sustainable and Renewable Energy:;2024:;volume( 001 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian