YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generative Design of a Gas Turbine Combustor Using Invertible Neural Networks

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 001::page 11007-1
    Author:
    Krueger, Patrick
    ,
    Gottschalk, Hanno
    ,
    Werdelmann, Bastian
    ,
    Krebs, Werner
    DOI: 10.1115/1.4066294
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The need to burn 100% H2 in high efficient gas turbines featuring low NOx combustion in premix mode requires the complete redesign of the combustion system to ensure stable operation without any flashback. Since all engine frames featuring a power range from 4 MW up to 600 MW are affected, a huge design effort is expected. To reduce this effort, especially to transfer knowledge between the different engine classes, generative design methods using latest AI technology will provide promising potential. In this work, this challenge is approached utilizing the current advances in generative artificial intelligence. We train an invertible neural network (INN) on an expandable database of geometrically parameterized combustor designs with simulated performance labels. Utilizing the INN in its inverse direction, multiple design proposals are generated, which fulfill specified performance labels.
    • Download: (4.288Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generative Design of a Gas Turbine Combustor Using Invertible Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305200
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKrueger, Patrick
    contributor authorGottschalk, Hanno
    contributor authorWerdelmann, Bastian
    contributor authorKrebs, Werner
    date accessioned2025-04-21T09:57:43Z
    date available2025-04-21T09:57:43Z
    date copyright9/13/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_147_01_011007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305200
    description abstractThe need to burn 100% H2 in high efficient gas turbines featuring low NOx combustion in premix mode requires the complete redesign of the combustion system to ensure stable operation without any flashback. Since all engine frames featuring a power range from 4 MW up to 600 MW are affected, a huge design effort is expected. To reduce this effort, especially to transfer knowledge between the different engine classes, generative design methods using latest AI technology will provide promising potential. In this work, this challenge is approached utilizing the current advances in generative artificial intelligence. We train an invertible neural network (INN) on an expandable database of geometrically parameterized combustor designs with simulated performance labels. Utilizing the INN in its inverse direction, multiple design proposals are generated, which fulfill specified performance labels.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGenerative Design of a Gas Turbine Combustor Using Invertible Neural Networks
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066294
    journal fristpage11007-1
    journal lastpage11007-13
    page13
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 147 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian