YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study on the Effect of Intake Pressure on a Natural Gas-Diesel Dual-Fuel Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012::page 121024-1
    Author:
    Dev, Shouvik
    ,
    Guo, Hongsheng
    ,
    Liko, Brian
    ,
    Yousefi, Amin
    DOI: 10.1115/1.4066592
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Natural gas-diesel dual-fuel (NDDF) combustion can be a viable method to reduce diesel usage in compression ignition (CI) internal combustion engines. Potential benefits of NDDF engines in comparison to conventional diesel engines include decreases in particulate matter (PM) and carbon dioxide (CO2) emissions. This study focuses on the effect of intake pressure on a dual-fuel engine with intake port injected natural gas (NG) and in-cylinder direct injected diesel at two typical engine operation conditions—low load-high speed and high load-low speed. The research work was performed on a heavy-duty, four-stroke CI, single-cylinder research engine at a NG-diesel energy ratio of approximately 3:1. The results show that when the intake pressure was increased, the indicated thermal efficiency (ITE) decreased and increased at the low load-high speed and high load-low speed conditions, respectively, for NDDF combustion. For the low load-high speed NDDF combustion, increasing intake pressure increased the carbon monoxide, methane, and soot emissions, but decreased the nitrogen oxide (NOx) emissions. For the high load-low speed NDDF combustion, increasing intake pressure caused the methane emissions to increase, and the carbon monoxide, NOx, and soot emissions to decrease. In-cylinder temperature measured at the tip of the diesel injector showed that the injector tip temperatures were higher for NDDF cases compared to diesel cases and these temperatures could be correlated with the combustion phasing and the NOx emissions. Increasing intake pressure caused lower injector tip temperatures for both NDDF operating conditions. Equivalent CO2 emissions for the low load-high speed and high load-low speed NDDF cases were higher and lower than the corresponding diesel cases, respectively.
    • Download: (4.573Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study on the Effect of Intake Pressure on a Natural Gas-Diesel Dual-Fuel Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305199
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDev, Shouvik
    contributor authorGuo, Hongsheng
    contributor authorLiko, Brian
    contributor authorYousefi, Amin
    date accessioned2025-04-21T09:57:41Z
    date available2025-04-21T09:57:41Z
    date copyright10/25/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_12_121024.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305199
    description abstractNatural gas-diesel dual-fuel (NDDF) combustion can be a viable method to reduce diesel usage in compression ignition (CI) internal combustion engines. Potential benefits of NDDF engines in comparison to conventional diesel engines include decreases in particulate matter (PM) and carbon dioxide (CO2) emissions. This study focuses on the effect of intake pressure on a dual-fuel engine with intake port injected natural gas (NG) and in-cylinder direct injected diesel at two typical engine operation conditions—low load-high speed and high load-low speed. The research work was performed on a heavy-duty, four-stroke CI, single-cylinder research engine at a NG-diesel energy ratio of approximately 3:1. The results show that when the intake pressure was increased, the indicated thermal efficiency (ITE) decreased and increased at the low load-high speed and high load-low speed conditions, respectively, for NDDF combustion. For the low load-high speed NDDF combustion, increasing intake pressure increased the carbon monoxide, methane, and soot emissions, but decreased the nitrogen oxide (NOx) emissions. For the high load-low speed NDDF combustion, increasing intake pressure caused the methane emissions to increase, and the carbon monoxide, NOx, and soot emissions to decrease. In-cylinder temperature measured at the tip of the diesel injector showed that the injector tip temperatures were higher for NDDF cases compared to diesel cases and these temperatures could be correlated with the combustion phasing and the NOx emissions. Increasing intake pressure caused lower injector tip temperatures for both NDDF operating conditions. Equivalent CO2 emissions for the low load-high speed and high load-low speed NDDF cases were higher and lower than the corresponding diesel cases, respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental Study on the Effect of Intake Pressure on a Natural Gas-Diesel Dual-Fuel Engine
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066592
    journal fristpage121024-1
    journal lastpage121024-13
    page13
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian