YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Filter Approximations for Random Vibroacoustics of Rigid Porous Media

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003::page 31201-1
    Author:
    Sreekumar, Abhilash
    ,
    Kougioumtzoglou, Ioannis A.
    ,
    Triantafyllou, Savvas P.
    DOI: 10.1115/1.4064286
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An approximate efficient stochastic dynamics technique is developed for determining response statistics of linear systems with frequency-dependent parameters, which are used for modeling wave propagation through rigid porous media subject to stochastic excitation. This is done in conjunction with a filter approximation of the system frequency response function. The technique exhibits the following advantages compared to alternative solution treatments in the literature. First, relying on an input–output relationship in the frequency domain, the response power spectrum matrix is integrated analytically for determining the stationary response covariance matrix, at zero computational cost. Second, the proposed filter approximation facilitates a state-variable formulation of the governing stochastic differential equations in the time domain. This yields a coupled system of deterministic differential equations to be solved numerically for the response covariance matrix. Thus, the nonstationary (transient) response covariance can be computed in the time domain at a relatively low computational cost. Various numerical examples are considered for demonstrating the accuracy and computational efficiency of the herein developed technique. Comparisons with pertinent Monte Carlo simulation (MCS) data are included as well.
    • Download: (1.827Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Filter Approximations for Random Vibroacoustics of Rigid Porous Media

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303699
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorSreekumar, Abhilash
    contributor authorKougioumtzoglou, Ioannis A.
    contributor authorTriantafyllou, Savvas P.
    date accessioned2024-12-24T19:18:19Z
    date available2024-12-24T19:18:19Z
    date copyright1/24/2024 12:00:00 AM
    date issued2024
    identifier issn2332-9017
    identifier otherrisk_010_03_031201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303699
    description abstractAn approximate efficient stochastic dynamics technique is developed for determining response statistics of linear systems with frequency-dependent parameters, which are used for modeling wave propagation through rigid porous media subject to stochastic excitation. This is done in conjunction with a filter approximation of the system frequency response function. The technique exhibits the following advantages compared to alternative solution treatments in the literature. First, relying on an input–output relationship in the frequency domain, the response power spectrum matrix is integrated analytically for determining the stationary response covariance matrix, at zero computational cost. Second, the proposed filter approximation facilitates a state-variable formulation of the governing stochastic differential equations in the time domain. This yields a coupled system of deterministic differential equations to be solved numerically for the response covariance matrix. Thus, the nonstationary (transient) response covariance can be computed in the time domain at a relatively low computational cost. Various numerical examples are considered for demonstrating the accuracy and computational efficiency of the herein developed technique. Comparisons with pertinent Monte Carlo simulation (MCS) data are included as well.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFilter Approximations for Random Vibroacoustics of Rigid Porous Media
    typeJournal Paper
    journal volume10
    journal issue3
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4064286
    journal fristpage31201-1
    journal lastpage31201-9
    page9
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian