Show simple item record

contributor authorSreekumar, Abhilash
contributor authorKougioumtzoglou, Ioannis A.
contributor authorTriantafyllou, Savvas P.
date accessioned2024-12-24T19:18:19Z
date available2024-12-24T19:18:19Z
date copyright1/24/2024 12:00:00 AM
date issued2024
identifier issn2332-9017
identifier otherrisk_010_03_031201.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303699
description abstractAn approximate efficient stochastic dynamics technique is developed for determining response statistics of linear systems with frequency-dependent parameters, which are used for modeling wave propagation through rigid porous media subject to stochastic excitation. This is done in conjunction with a filter approximation of the system frequency response function. The technique exhibits the following advantages compared to alternative solution treatments in the literature. First, relying on an input–output relationship in the frequency domain, the response power spectrum matrix is integrated analytically for determining the stationary response covariance matrix, at zero computational cost. Second, the proposed filter approximation facilitates a state-variable formulation of the governing stochastic differential equations in the time domain. This yields a coupled system of deterministic differential equations to be solved numerically for the response covariance matrix. Thus, the nonstationary (transient) response covariance can be computed in the time domain at a relatively low computational cost. Various numerical examples are considered for demonstrating the accuracy and computational efficiency of the herein developed technique. Comparisons with pertinent Monte Carlo simulation (MCS) data are included as well.
publisherThe American Society of Mechanical Engineers (ASME)
titleFilter Approximations for Random Vibroacoustics of Rigid Porous Media
typeJournal Paper
journal volume10
journal issue3
journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
identifier doi10.1115/1.4064286
journal fristpage31201-1
journal lastpage31201-9
page9
treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record