YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Study on the Automatic Ballast Control of a Floating Dock

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 004::page 41401-1
    Author:
    Wen, Xueliang
    ,
    Zhang, Jianan
    ,
    García Conde, Alejandro
    ,
    Ong, Muk Chen
    DOI: 10.1115/1.4064014
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The ballast control of a floating dock mainly relies on manual operations, which can be time-consuming and requires skilled workers. This study proposes an automatic ballast control system for floating docks, which improves operational efficiency and safety during the vessel docking process. A numerical model is developed to simulate the dynamic process of the floating dock's operations, which includes a six degrees-of-freedom (6DOF) model, a hydrostatic force model, a hydrodynamic force model, and a hydraulic model. The hydrostatic force model is developed using the Archimedes law and a strip theory along the longitudinal direction. The hydrodynamic model is made based on the effects of added mass and dynamic damping. The hydraulic model is proposed to deal with the hydraulic calculation of the ballast water system. The present automatic ballast control is designed based on a modified proportional controller (P-controller) to control the valve opening angles when the pitch or roll angles are larger than the corresponding threshold values. Without using controllers, the roll angles of the dock can reach 8.9 deg and 13 deg during the ballasting and de-ballasting operations, respectively. The present modified P-controller with optimized control parameters can stabilize the dock during the de-ballasting operation and keep the maximum pitch and roll angles no larger than 0.016 deg and 0.0783 deg, respectively. During the ballasting operation with the same control parameters, the roll and pitch are below 0.0604 deg and 0.0145 deg, respectively. The present automatic control will be further implemented in the vessel docking cases and can significantly improve the stability of the dock.
    • Download: (1.704Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Study on the Automatic Ballast Control of a Floating Dock

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303628
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorWen, Xueliang
    contributor authorZhang, Jianan
    contributor authorGarcía Conde, Alejandro
    contributor authorOng, Muk Chen
    date accessioned2024-12-24T19:16:20Z
    date available2024-12-24T19:16:20Z
    date copyright12/11/2023 12:00:00 AM
    date issued2023
    identifier issn0892-7219
    identifier otheromae_146_4_041401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303628
    description abstractThe ballast control of a floating dock mainly relies on manual operations, which can be time-consuming and requires skilled workers. This study proposes an automatic ballast control system for floating docks, which improves operational efficiency and safety during the vessel docking process. A numerical model is developed to simulate the dynamic process of the floating dock's operations, which includes a six degrees-of-freedom (6DOF) model, a hydrostatic force model, a hydrodynamic force model, and a hydraulic model. The hydrostatic force model is developed using the Archimedes law and a strip theory along the longitudinal direction. The hydrodynamic model is made based on the effects of added mass and dynamic damping. The hydraulic model is proposed to deal with the hydraulic calculation of the ballast water system. The present automatic ballast control is designed based on a modified proportional controller (P-controller) to control the valve opening angles when the pitch or roll angles are larger than the corresponding threshold values. Without using controllers, the roll angles of the dock can reach 8.9 deg and 13 deg during the ballasting and de-ballasting operations, respectively. The present modified P-controller with optimized control parameters can stabilize the dock during the de-ballasting operation and keep the maximum pitch and roll angles no larger than 0.016 deg and 0.0783 deg, respectively. During the ballasting operation with the same control parameters, the roll and pitch are below 0.0604 deg and 0.0145 deg, respectively. The present automatic control will be further implemented in the vessel docking cases and can significantly improve the stability of the dock.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Study on the Automatic Ballast Control of a Floating Dock
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4064014
    journal fristpage41401-1
    journal lastpage41401-12
    page12
    treeJournal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian