Show simple item record

contributor authorWen, Xueliang
contributor authorZhang, Jianan
contributor authorGarcía Conde, Alejandro
contributor authorOng, Muk Chen
date accessioned2024-12-24T19:16:20Z
date available2024-12-24T19:16:20Z
date copyright12/11/2023 12:00:00 AM
date issued2023
identifier issn0892-7219
identifier otheromae_146_4_041401.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303628
description abstractThe ballast control of a floating dock mainly relies on manual operations, which can be time-consuming and requires skilled workers. This study proposes an automatic ballast control system for floating docks, which improves operational efficiency and safety during the vessel docking process. A numerical model is developed to simulate the dynamic process of the floating dock's operations, which includes a six degrees-of-freedom (6DOF) model, a hydrostatic force model, a hydrodynamic force model, and a hydraulic model. The hydrostatic force model is developed using the Archimedes law and a strip theory along the longitudinal direction. The hydrodynamic model is made based on the effects of added mass and dynamic damping. The hydraulic model is proposed to deal with the hydraulic calculation of the ballast water system. The present automatic ballast control is designed based on a modified proportional controller (P-controller) to control the valve opening angles when the pitch or roll angles are larger than the corresponding threshold values. Without using controllers, the roll angles of the dock can reach 8.9 deg and 13 deg during the ballasting and de-ballasting operations, respectively. The present modified P-controller with optimized control parameters can stabilize the dock during the de-ballasting operation and keep the maximum pitch and roll angles no larger than 0.016 deg and 0.0783 deg, respectively. During the ballasting operation with the same control parameters, the roll and pitch are below 0.0604 deg and 0.0145 deg, respectively. The present automatic control will be further implemented in the vessel docking cases and can significantly improve the stability of the dock.
publisherThe American Society of Mechanical Engineers (ASME)
titleNumerical Study on the Automatic Ballast Control of a Floating Dock
typeJournal Paper
journal volume146
journal issue4
journal titleJournal of Offshore Mechanics and Arctic Engineering
identifier doi10.1115/1.4064014
journal fristpage41401-1
journal lastpage41401-12
page12
treeJournal of Offshore Mechanics and Arctic Engineering:;2023:;volume( 146 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record