YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigations on Enhancement of Pool Boiling Heat Transfer on a Mixed Wettability Surface Employing Lattice Boltzmann Method

    Source: ASME Journal of Heat and Mass Transfer:;2023:;volume( 146 ):;issue: 001::page 11601-1
    Author:
    Das, Sonali Priyadarshini
    ,
    Bhattacharya, Anandaroop
    DOI: 10.1115/1.4063647
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a systematic numerical study of pool boiling heat transfer on a mixed wettability heated surface is done using the lattice Boltzmann method (LBM) with a multiple relaxation time (MRT)-based collision operator. The effect of the design parameters, viz, size of the hydrophobic patch (D), spacing between hydrophobic patches (L), number of hydrophobic patches (N), and uneven-sized patches, on pool boiling was studied and results are explained through detailed analysis of bubble nucleation, growth, coalescence, and departure from the heated surface. The results show that mixed wettability surfaces with strategically sized and positioned hydrophobic patches on a hydrophilic surface can result in high heat flux for pool boiling across the entire range of surface superheat or Jacob number (Ja) by combining the advantages of hydrophobic surface in nucleate boiling and hydrophilic surface in transition and film boiling. Further, the mixed wettability surface can delay the onset of film boiling compared to a pure or superhydrophilic surface thereby resulting in higher critical heat flux (CHF). A hydrophobic to total surface area ratio of 30–40% was found to be optimal for all ranges of surface superheat or Jacob number (Ja), which agrees well with the experimental result of 38.46% reported by Motezakker et al. (2019, “Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling,” Int. J. Heat Mass Transfer, 135, pp. 164–174).
    • Download: (2.443Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigations on Enhancement of Pool Boiling Heat Transfer on a Mixed Wettability Surface Employing Lattice Boltzmann Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303023
    Collections
    • ASME Journal of Heat and Mass Transfer

    Show full item record

    contributor authorDas, Sonali Priyadarshini
    contributor authorBhattacharya, Anandaroop
    date accessioned2024-12-24T18:56:38Z
    date available2024-12-24T18:56:38Z
    date copyright11/6/2023 12:00:00 AM
    date issued2023
    identifier issn2832-8450
    identifier otherht_146_01_011601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303023
    description abstractIn this paper, a systematic numerical study of pool boiling heat transfer on a mixed wettability heated surface is done using the lattice Boltzmann method (LBM) with a multiple relaxation time (MRT)-based collision operator. The effect of the design parameters, viz, size of the hydrophobic patch (D), spacing between hydrophobic patches (L), number of hydrophobic patches (N), and uneven-sized patches, on pool boiling was studied and results are explained through detailed analysis of bubble nucleation, growth, coalescence, and departure from the heated surface. The results show that mixed wettability surfaces with strategically sized and positioned hydrophobic patches on a hydrophilic surface can result in high heat flux for pool boiling across the entire range of surface superheat or Jacob number (Ja) by combining the advantages of hydrophobic surface in nucleate boiling and hydrophilic surface in transition and film boiling. Further, the mixed wettability surface can delay the onset of film boiling compared to a pure or superhydrophilic surface thereby resulting in higher critical heat flux (CHF). A hydrophobic to total surface area ratio of 30–40% was found to be optimal for all ranges of surface superheat or Jacob number (Ja), which agrees well with the experimental result of 38.46% reported by Motezakker et al. (2019, “Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling,” Int. J. Heat Mass Transfer, 135, pp. 164–174).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigations on Enhancement of Pool Boiling Heat Transfer on a Mixed Wettability Surface Employing Lattice Boltzmann Method
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4063647
    journal fristpage11601-1
    journal lastpage11601-11
    page11
    treeASME Journal of Heat and Mass Transfer:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian