YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ignition of Aged Lubricants in a Shock Tube

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012::page 121013-1
    Author:
    Abulail, Matthew
    ,
    Juárez, Raquel
    ,
    Petersen, Eric L.
    DOI: 10.1115/1.4066166
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Lubricants experience harsh conditions which result in degradation of the oil. To imitate similar conditions, Mobil DTE 732, a common gas turbine lubricating oil, was subjected to high temperatures for an extended period of time, until thermal degradation occurred, indicated through the creation of coke. Samples were taken throughout this process, with the sample that was tested having been exposed for 78 h. Utilizing an endwall injector system, the samples were ignited behind reflected shock waves in the high-pressure shock tube (HPST) at Texas A&M University. The injector system utilizes the incident wave to increase the temperature of the lubricant past its vaporization temperature, thereby vaporizing the fuel prior to the arrival of the reflected shock. Using this system, the base Mobil DTE 732 and the 78-h sample produced from the coking test were tested at 1.06–1.58 atm and between 1171 and 1373 K. The ignition delay times (IDTs) of the samples were recorded utilizing pressure rise and hydroxyl chemiluminescence located in the sidewall of the shock tube. Upon the analysis of the results, there were negligible changes in the ignition behavior of the fuel, based on ignition delay time. However, changes in the combustion behavior were experienced, such as an absence of two-stage ignition and lower viscosity for the post-coke sample.
    • Download: (1.436Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ignition of Aged Lubricants in a Shock Tube

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303010
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorAbulail, Matthew
    contributor authorJuárez, Raquel
    contributor authorPetersen, Eric L.
    date accessioned2024-12-24T18:56:13Z
    date available2024-12-24T18:56:13Z
    date copyright9/5/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_12_121013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303010
    description abstractLubricants experience harsh conditions which result in degradation of the oil. To imitate similar conditions, Mobil DTE 732, a common gas turbine lubricating oil, was subjected to high temperatures for an extended period of time, until thermal degradation occurred, indicated through the creation of coke. Samples were taken throughout this process, with the sample that was tested having been exposed for 78 h. Utilizing an endwall injector system, the samples were ignited behind reflected shock waves in the high-pressure shock tube (HPST) at Texas A&M University. The injector system utilizes the incident wave to increase the temperature of the lubricant past its vaporization temperature, thereby vaporizing the fuel prior to the arrival of the reflected shock. Using this system, the base Mobil DTE 732 and the 78-h sample produced from the coking test were tested at 1.06–1.58 atm and between 1171 and 1373 K. The ignition delay times (IDTs) of the samples were recorded utilizing pressure rise and hydroxyl chemiluminescence located in the sidewall of the shock tube. Upon the analysis of the results, there were negligible changes in the ignition behavior of the fuel, based on ignition delay time. However, changes in the combustion behavior were experienced, such as an absence of two-stage ignition and lower viscosity for the post-coke sample.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIgnition of Aged Lubricants in a Shock Tube
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066166
    journal fristpage121013-1
    journal lastpage121013-6
    page6
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian