YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Reactor-Network Framework to Model Performance and Emissions of a Longitudinally Staged Combustion System for Carbon-Free Fuels

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012::page 121012-1
    Author:
    Gopalakrishnan, Harish S.
    ,
    Maddipati, Raj
    ,
    Gruber, Andrea
    ,
    Bothien, Mirko R.
    ,
    Aditya, Konduri
    DOI: 10.1115/1.4066164
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hydrogen and ammonia are considered crucial carbon-free energy carriers optimally suited for seasonal chemical storage and balancing of the energy system. In this context, longitudinally staged combustion systems represent an attractive technology in power generation for their capability of achieving low NOx emissions while conserving high load and, crucially, fuel flexibility at high thermal efficiency. Such two-stage combustion systems have been successfully implemented for natural gas firing of gas turbines and, more recently, have shown significant potential for clean and efficient hydrogen-firing operation. However, optimal operation with ammonia-based fuel mixtures is yet to be established. In recent works, a novel Rich-Quench-Lean (RQL) operational concept was proposed to burn a fuel-rich mixture of partially decomposed ammonia and air (for equivalence ratios ϕ∼1.1−1.2) in the first stage of a longitudinally staged combustion system. Complete oxidation of the remaining (hydrogen) fuel is theoretically ensured by dilution-air addition downstream of the first stage combustor. However, any operational concept based on these near-stoichiometric combustion conditions, while minimizing undesired prompt NOx and N2O formation by ammonia oxidation, can potentially result in significant, and certainly unpractical, thermal load on the first stage combustor liner that needs to be mitigated. In the present study, we exploit a newly developed reactors-network model to efficiently investigate the NOx-emissions performance of a longitudinally staged combustion system fired with natural gas, hydrogen or ammonia. First, the reactors network framework is validated with experimental, computational and other similar reactor network results in the literature. Second, the optimal air distribution within the longitudinally staged combustion system is found for clean (low emissions) and efficient (complete fuel conversion) ammonia-firing operation. Third, the consequences of such “ammonia-optimized” air distribution on flame stabilization and NOx emissions in more conventional natural gas- and hydrogen-firing operation are considered. Finally, an optimal air and fuel distribution is suggested for the longitudinally staged combustion system on the basis that, while still ensuring robust flame stabilization and high turbine inlet temperature, it minimizes NOx emissions for all three fuels considered.
    • Download: (2.134Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Reactor-Network Framework to Model Performance and Emissions of a Longitudinally Staged Combustion System for Carbon-Free Fuels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303009
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGopalakrishnan, Harish S.
    contributor authorMaddipati, Raj
    contributor authorGruber, Andrea
    contributor authorBothien, Mirko R.
    contributor authorAditya, Konduri
    date accessioned2024-12-24T18:56:12Z
    date available2024-12-24T18:56:12Z
    date copyright9/5/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_12_121012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303009
    description abstractHydrogen and ammonia are considered crucial carbon-free energy carriers optimally suited for seasonal chemical storage and balancing of the energy system. In this context, longitudinally staged combustion systems represent an attractive technology in power generation for their capability of achieving low NOx emissions while conserving high load and, crucially, fuel flexibility at high thermal efficiency. Such two-stage combustion systems have been successfully implemented for natural gas firing of gas turbines and, more recently, have shown significant potential for clean and efficient hydrogen-firing operation. However, optimal operation with ammonia-based fuel mixtures is yet to be established. In recent works, a novel Rich-Quench-Lean (RQL) operational concept was proposed to burn a fuel-rich mixture of partially decomposed ammonia and air (for equivalence ratios ϕ∼1.1−1.2) in the first stage of a longitudinally staged combustion system. Complete oxidation of the remaining (hydrogen) fuel is theoretically ensured by dilution-air addition downstream of the first stage combustor. However, any operational concept based on these near-stoichiometric combustion conditions, while minimizing undesired prompt NOx and N2O formation by ammonia oxidation, can potentially result in significant, and certainly unpractical, thermal load on the first stage combustor liner that needs to be mitigated. In the present study, we exploit a newly developed reactors-network model to efficiently investigate the NOx-emissions performance of a longitudinally staged combustion system fired with natural gas, hydrogen or ammonia. First, the reactors network framework is validated with experimental, computational and other similar reactor network results in the literature. Second, the optimal air distribution within the longitudinally staged combustion system is found for clean (low emissions) and efficient (complete fuel conversion) ammonia-firing operation. Third, the consequences of such “ammonia-optimized” air distribution on flame stabilization and NOx emissions in more conventional natural gas- and hydrogen-firing operation are considered. Finally, an optimal air and fuel distribution is suggested for the longitudinally staged combustion system on the basis that, while still ensuring robust flame stabilization and high turbine inlet temperature, it minimizes NOx emissions for all three fuels considered.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Reactor-Network Framework to Model Performance and Emissions of a Longitudinally Staged Combustion System for Carbon-Free Fuels
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066164
    journal fristpage121012-1
    journal lastpage121012-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian