YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamical Systems Characterization and Reduced Order Modeling of Thermoacoustics in a Lean Direct Injection Hydrogen Combustor

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012::page 121008-1
    Author:
    Kumar, Ankit D.
    ,
    Ezenwajiaku, Chinonso
    ,
    Balachandran, Ramanarayanan
    ,
    Ducci, Andrea
    ,
    Talibi, Midhat
    ,
    Massey, James C.
    ,
    Swaminathan, Nedunchezhian
    DOI: 10.1115/1.4066149
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hydrogen is a promising zero-carbon fuel for decarbonized energy and transportation sectors. While carbon emission is not a concern for hydrogen combustion, its higher adiabatic flame temperature poses challenges of mitigating thermal NOx emissions. The wide flammability limits of hydrogen allow a fuel-lean operation, which can reduce NOx emissions. However, lean operation makes the combustion chamber susceptible to thermoacoustic oscillations. In this study, the thermoacoustic instabilities of partially premixed hydrogen flames in a lean direct injection (LDI) multicluster combustor are characterized using dynamical systems theory. The combustor was operated at a range of bulk velocities (30–90 m/s) and equivalence ratios (0.2–0.6), and time-resolved pressure oscillations and integrated OH* chemiluminescence measurements were taken. The thermoacoustic system reveals a variety of dynamical states in pressure such as period-1 limit cycle oscillation (LCO) with a single characteristic frequency, period-2 LCO with two characteristic frequencies, intermittent, quasi-periodic, and chaotic states as either bulk velocity or equivalence ratio is varied. At a bulk velocity of 30 m/s, as the equivalence ratio is gradually decreased from 0.6 to 0.2, the dynamical behavior follows a sequence from an intermittent state to a period-1 LCO, then to a quasi-periodic state, and eventually reaches a chaotic state. As the equivalence ratio is decreased for a bulk velocity of 60 m/s, the pressure oscillations evolve from a period-2 LCO to quasi-periodic state before flame blows off. The emergence of period-2 and quasi-periodic states indicate the presence of strong nonlinear interactions among the cavity acoustic modes. These modes and their spatial behavior are investigated using a reduced order model which solves the three-dimensional (3D) inhomogeneous Helmholtz equation with an n–tau flame model. The analyses show that the period-2 and quasi-periodic states can arise due to the interaction between the plenum and combustion chamber modes indicating that hydrogen flames may excite a wide range of cavity acoustic modes.
    • Download: (2.552Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamical Systems Characterization and Reduced Order Modeling of Thermoacoustics in a Lean Direct Injection Hydrogen Combustor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303004
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKumar, Ankit D.
    contributor authorEzenwajiaku, Chinonso
    contributor authorBalachandran, Ramanarayanan
    contributor authorDucci, Andrea
    contributor authorTalibi, Midhat
    contributor authorMassey, James C.
    contributor authorSwaminathan, Nedunchezhian
    date accessioned2024-12-24T18:55:59Z
    date available2024-12-24T18:55:59Z
    date copyright8/23/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_12_121008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303004
    description abstractHydrogen is a promising zero-carbon fuel for decarbonized energy and transportation sectors. While carbon emission is not a concern for hydrogen combustion, its higher adiabatic flame temperature poses challenges of mitigating thermal NOx emissions. The wide flammability limits of hydrogen allow a fuel-lean operation, which can reduce NOx emissions. However, lean operation makes the combustion chamber susceptible to thermoacoustic oscillations. In this study, the thermoacoustic instabilities of partially premixed hydrogen flames in a lean direct injection (LDI) multicluster combustor are characterized using dynamical systems theory. The combustor was operated at a range of bulk velocities (30–90 m/s) and equivalence ratios (0.2–0.6), and time-resolved pressure oscillations and integrated OH* chemiluminescence measurements were taken. The thermoacoustic system reveals a variety of dynamical states in pressure such as period-1 limit cycle oscillation (LCO) with a single characteristic frequency, period-2 LCO with two characteristic frequencies, intermittent, quasi-periodic, and chaotic states as either bulk velocity or equivalence ratio is varied. At a bulk velocity of 30 m/s, as the equivalence ratio is gradually decreased from 0.6 to 0.2, the dynamical behavior follows a sequence from an intermittent state to a period-1 LCO, then to a quasi-periodic state, and eventually reaches a chaotic state. As the equivalence ratio is decreased for a bulk velocity of 60 m/s, the pressure oscillations evolve from a period-2 LCO to quasi-periodic state before flame blows off. The emergence of period-2 and quasi-periodic states indicate the presence of strong nonlinear interactions among the cavity acoustic modes. These modes and their spatial behavior are investigated using a reduced order model which solves the three-dimensional (3D) inhomogeneous Helmholtz equation with an n–tau flame model. The analyses show that the period-2 and quasi-periodic states can arise due to the interaction between the plenum and combustion chamber modes indicating that hydrogen flames may excite a wide range of cavity acoustic modes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamical Systems Characterization and Reduced Order Modeling of Thermoacoustics in a Lean Direct Injection Hydrogen Combustor
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066149
    journal fristpage121008-1
    journal lastpage121008-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian