YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical and Experimental Study of Flow-Induced Vibrations in Micro-Tube Heat Exchangers

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 011::page 111028-1
    Author:
    Phan, H. M.
    ,
    Newman, F.
    ,
    O'Pray, C. E.
    ,
    Parikh, D.
    DOI: 10.1115/1.4066156
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Thermal management presents an increasing challenge in future engineering systems, especially in applications like combined cycle precooling, waste heat recovery, and innovative propulsion systems. These systems face a growing demand for managing higher heat loads while coping with limited heat sink. Central to these thermal management systems is the heat exchanger, with microtube heat transfer emerging as a promising solution for future technologies. Microtube heat exchangers are becoming popular owing to their ability to significantly enhance the heat transfer surface area while maintaining a compact core volume. As the demand for high-performance, lightweight heat exchangers escalates, microtube heat exchangers are being designed to be increasingly compact yet highly loaded. This trend poses significant challenges to their structural integrity, particularly under harsh operational conditions. Flow-induced vibrations, a critical concern in the design of tubular heat exchangers, can lead to tube failures, compromising the safe operation of engineering systems. While the flow-induced vibrations of conventional-sized heat exchangers have been extensively studied, there is a noticeable gap in the research on similar phenomena in microtube heat exchangers. This paper details ongoing research at Reaction Engines Ltd (REL) to aid the design of safe and robust heat exchangers, focusing on the flow-induced vibrations in microtube heat exchangers and utilizing a cutting-edge laser vibrometry test facility. A predictive model, employing an unsteady flow simulation approach and eigenvalue analysis, has been formulated. A key observation is the distinctive coupled transverse–streamwise orbital motion in microtube heat exchangers, differing from the predominantly transverse direction of failures in conventional-sized heat exchangers.
    • Download: (2.103Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical and Experimental Study of Flow-Induced Vibrations in Micro-Tube Heat Exchangers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302995
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPhan, H. M.
    contributor authorNewman, F.
    contributor authorO'Pray, C. E.
    contributor authorParikh, D.
    date accessioned2024-12-24T18:55:43Z
    date available2024-12-24T18:55:43Z
    date copyright8/23/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_11_111028.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302995
    description abstractThermal management presents an increasing challenge in future engineering systems, especially in applications like combined cycle precooling, waste heat recovery, and innovative propulsion systems. These systems face a growing demand for managing higher heat loads while coping with limited heat sink. Central to these thermal management systems is the heat exchanger, with microtube heat transfer emerging as a promising solution for future technologies. Microtube heat exchangers are becoming popular owing to their ability to significantly enhance the heat transfer surface area while maintaining a compact core volume. As the demand for high-performance, lightweight heat exchangers escalates, microtube heat exchangers are being designed to be increasingly compact yet highly loaded. This trend poses significant challenges to their structural integrity, particularly under harsh operational conditions. Flow-induced vibrations, a critical concern in the design of tubular heat exchangers, can lead to tube failures, compromising the safe operation of engineering systems. While the flow-induced vibrations of conventional-sized heat exchangers have been extensively studied, there is a noticeable gap in the research on similar phenomena in microtube heat exchangers. This paper details ongoing research at Reaction Engines Ltd (REL) to aid the design of safe and robust heat exchangers, focusing on the flow-induced vibrations in microtube heat exchangers and utilizing a cutting-edge laser vibrometry test facility. A predictive model, employing an unsteady flow simulation approach and eigenvalue analysis, has been formulated. A key observation is the distinctive coupled transverse–streamwise orbital motion in microtube heat exchangers, differing from the predominantly transverse direction of failures in conventional-sized heat exchangers.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical and Experimental Study of Flow-Induced Vibrations in Micro-Tube Heat Exchangers
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066156
    journal fristpage111028-1
    journal lastpage111028-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian