YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrated Power and Thermal Management System for A Hybrid-Electric Aircraft: Integrated Modeling and Passive Cooling Analysis

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 011::page 111024-1
    Author:
    Ouyang, Zeyu
    ,
    Nikolaidis, Theoklis
    ,
    Jafari, Soheil
    DOI: 10.1115/1.4066050
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aircraft electrification introduces challenges in power and thermal management. In a hybrid-electric aircraft (HEA), the additional heat loads generated by the high-power electrical components in the propulsion system can negate the benefits of the HEA. Consequently, an integrated energy management system is required for the HEA to reject the additional heat loads while minimizing energy consumption. This paper presents the integrated modeling method for an integrated power and thermal management system (IPTMS) for HEA. With this method, a platform can be developed to assess the varying efficiencies of the components in the electrical propulsion system (EPS), such as the battery, motor, bus, and converter, and the performance of the thermal management system (TMS), such as passive cooling, during a flight mission. This makes it applicable to modular designs and optimizations of the IPTMS. A small/medium range (SMR) aircraft similar to ATR72 is studied to demonstrate the platform's capabilities. In this study, the EPS operates only during takeoff and climb. It provides supplementary propulsive power, which declines linearly from 924 kW to zero. Therefore, the platform assesses the heat and power loads of the IPTMS for a typical flight mission (takeoff and climb) in this study. The performance of passive cooling is also analyzed across this typical flight mission and under normal, hot-day, and cold-day conditions. It was found that under the normal condition, after the midclimb flight mission, the EPS components except for the motor and the inverter can be cooled sufficiently by the passive cooling mechanism without any need for active cooling. However, the battery temperature decreases below its minimum operating temperature (15 °C) after the late-climb segment indicating the need for active temperature control to prevent damage. The passive cooling is still sufficient under the hot-day and cold-day conditions. Additionally, compared with the normal condition, the points at which passive cooling is sufficient to cool the component move forward in the hot-day condition and backward in the cold-day condition, respectively. Under the hot-day condition, the battery temperature is below its minimum temperature after the late-climb, still requiring active temperature control. In the cold-day condition, the bus, the converter, and the battery require active temperature control to prevent their temperatures below the minimum temperatures. Additionally, the heat from the gas turbine (GT) engine has a positive impact to ensure the motor and the inverter operate at their operating temperatures in cold conditions. The studied aircraft can be assessed with the integrated model under normal, hot-day, and cold-day conditions for heat and power loads, as well as passive TMS performance. This demonstrates the adaptability of the integrated modeling method. These findings imply the potential to minimize TMS weight and energy consumption, providing an insight for further research on IPTMS.
    • Download: (2.807Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrated Power and Thermal Management System for A Hybrid-Electric Aircraft: Integrated Modeling and Passive Cooling Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302990
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorOuyang, Zeyu
    contributor authorNikolaidis, Theoklis
    contributor authorJafari, Soheil
    date accessioned2024-12-24T18:55:36Z
    date available2024-12-24T18:55:36Z
    date copyright8/21/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_11_111024.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302990
    description abstractAircraft electrification introduces challenges in power and thermal management. In a hybrid-electric aircraft (HEA), the additional heat loads generated by the high-power electrical components in the propulsion system can negate the benefits of the HEA. Consequently, an integrated energy management system is required for the HEA to reject the additional heat loads while minimizing energy consumption. This paper presents the integrated modeling method for an integrated power and thermal management system (IPTMS) for HEA. With this method, a platform can be developed to assess the varying efficiencies of the components in the electrical propulsion system (EPS), such as the battery, motor, bus, and converter, and the performance of the thermal management system (TMS), such as passive cooling, during a flight mission. This makes it applicable to modular designs and optimizations of the IPTMS. A small/medium range (SMR) aircraft similar to ATR72 is studied to demonstrate the platform's capabilities. In this study, the EPS operates only during takeoff and climb. It provides supplementary propulsive power, which declines linearly from 924 kW to zero. Therefore, the platform assesses the heat and power loads of the IPTMS for a typical flight mission (takeoff and climb) in this study. The performance of passive cooling is also analyzed across this typical flight mission and under normal, hot-day, and cold-day conditions. It was found that under the normal condition, after the midclimb flight mission, the EPS components except for the motor and the inverter can be cooled sufficiently by the passive cooling mechanism without any need for active cooling. However, the battery temperature decreases below its minimum operating temperature (15 °C) after the late-climb segment indicating the need for active temperature control to prevent damage. The passive cooling is still sufficient under the hot-day and cold-day conditions. Additionally, compared with the normal condition, the points at which passive cooling is sufficient to cool the component move forward in the hot-day condition and backward in the cold-day condition, respectively. Under the hot-day condition, the battery temperature is below its minimum temperature after the late-climb, still requiring active temperature control. In the cold-day condition, the bus, the converter, and the battery require active temperature control to prevent their temperatures below the minimum temperatures. Additionally, the heat from the gas turbine (GT) engine has a positive impact to ensure the motor and the inverter operate at their operating temperatures in cold conditions. The studied aircraft can be assessed with the integrated model under normal, hot-day, and cold-day conditions for heat and power loads, as well as passive TMS performance. This demonstrates the adaptability of the integrated modeling method. These findings imply the potential to minimize TMS weight and energy consumption, providing an insight for further research on IPTMS.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIntegrated Power and Thermal Management System for A Hybrid-Electric Aircraft: Integrated Modeling and Passive Cooling Analysis
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4066050
    journal fristpage111024-1
    journal lastpage111024-14
    page14
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian