YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Dynamic Testing Approach for Particulate Erosion–Corrosion for Gas Turbine Coatings

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 011::page 111006-1
    Author:
    Stokes, Jamesa L.
    ,
    Presby, Michael J.
    DOI: 10.1115/1.4065886
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Particle interactions in engines can be complex phenomena leading to degradation of thermal (TBCs) and environmental barrier coatings (EBCs) meant to protect engine components. Ingestion of particles into the engine can lead to recession of coatings due to particle erosion. Similarly, these particles can become molten, adhere to coatings, and result in thermochemical corrosion of coating materials. Erosion testing is often carried out where particles are injected into a gas stream, accelerated within a nozzle, and impinge on samples. Conversely, most molten particle corrosion testing is often done in static furnaces, which does not capture the dynamic nature of deposition. Nevertheless, these damage mechanisms are often tested separately, and no standard exists to test both erosive/corrosive particle interactions with coating materials under relevant turbine operating conditions. Understanding the synergies of particle interactions is crucial in determining operating lifetimes of potential coating materials. Such considerations emphasize the need for realistic approaches in standardizing particle interaction testing in combustion environments. This study outlines efforts at NASA Glenn's Erosion Burner Rig Facility in improving dynamic erosion/corrosion testing methods by assessing the durability of state-of-the-art (SOA) TBC 7 wt % yttria-stabilized zirconia (7YSZ) as a function of particle deposition rate, burner temperature, and particle size. Calibration data to determine particle deposition rate will be presented, and mass and optical profilometry measurements were utilized to estimate mass/volume loss versus deposition per increment of particulate used. Electron microscopy analyses were then carried out to assess coating damage after testing.
    • Download: (4.893Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Dynamic Testing Approach for Particulate Erosion–Corrosion for Gas Turbine Coatings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302970
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorStokes, Jamesa L.
    contributor authorPresby, Michael J.
    date accessioned2024-12-24T18:54:52Z
    date available2024-12-24T18:54:52Z
    date copyright7/16/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_11_111006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302970
    description abstractParticle interactions in engines can be complex phenomena leading to degradation of thermal (TBCs) and environmental barrier coatings (EBCs) meant to protect engine components. Ingestion of particles into the engine can lead to recession of coatings due to particle erosion. Similarly, these particles can become molten, adhere to coatings, and result in thermochemical corrosion of coating materials. Erosion testing is often carried out where particles are injected into a gas stream, accelerated within a nozzle, and impinge on samples. Conversely, most molten particle corrosion testing is often done in static furnaces, which does not capture the dynamic nature of deposition. Nevertheless, these damage mechanisms are often tested separately, and no standard exists to test both erosive/corrosive particle interactions with coating materials under relevant turbine operating conditions. Understanding the synergies of particle interactions is crucial in determining operating lifetimes of potential coating materials. Such considerations emphasize the need for realistic approaches in standardizing particle interaction testing in combustion environments. This study outlines efforts at NASA Glenn's Erosion Burner Rig Facility in improving dynamic erosion/corrosion testing methods by assessing the durability of state-of-the-art (SOA) TBC 7 wt % yttria-stabilized zirconia (7YSZ) as a function of particle deposition rate, burner temperature, and particle size. Calibration data to determine particle deposition rate will be presented, and mass and optical profilometry measurements were utilized to estimate mass/volume loss versus deposition per increment of particulate used. Electron microscopy analyses were then carried out to assess coating damage after testing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Dynamic Testing Approach for Particulate Erosion–Corrosion for Gas Turbine Coatings
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4065886
    journal fristpage111006-1
    journal lastpage111006-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian