YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigations of Flows and Heat Transfer in Turbine Disk Cavities

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 010::page 101016-1
    Author:
    Beaux, Jean-Hugues
    ,
    Girardeau, Julian
    ,
    Khelladi, Sofiane
    ,
    Deligant, Michael
    ,
    Perilhon, Christelle
    DOI: 10.1115/1.4065632
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In gas turbines, the stator wells play a key role in the efficiency of the turbomachine. The research for performance gains requires a good understanding and an accurate modeling of the flows and heat transfers occurring in these areas. Within the framework of the European program main annulus gas path interaction (MAGPI) WP1, a two-stage axial turbine test rig provided an experimental database used to validate the computational fluid dynamics (CFD) models. The aim of this study is to setup a numerical methodology using the CFD solver ANSYSFluent to accurately predict the conjugate heat transfer in the stator well area. The validation of the methodology relies on thorough comparison of the results with the MAGPI WP1 experimental temperature/pressure measurements. A geometry with axial cooling injection through lock plate slot was chosen. A Reynolds-averaged Navier–Stokes (RANS) three-dimensional sectorized CFD model of the turbine with conjugate heat transfer was used. It includes main gas path, cavities with labyrinths, disks rotor, the casing, and the nozzle guide vanes (NGV). Mixing planes are placed between the static and rotating frames. Different influences (mesh, turbulence model, thermal boundary conditions, radial labyrinths clearances) were studied and compared with experimental data. As a baseline, the first calculations were performed with a cooling flowrate chosen so that hot gas ingresses from the main stream into the stator well cavity. Good agreements between predicted and measured temperatures/pressures were observed, especially in the vicinity of the stator well. Discrepancies were spotted at the first rotor hub endwall and at the upstream wheelspace and will be discussed. Two other cooling configurations were conducted, one with cooling air exiting from the disk rim cavity to the main gas path and the other with the lowest cooling flowrate and so the highest ingress. Finally, the turbine performance under nonadiabatic conditions has been evaluated with an appropriate efficiency definition.
    • Download: (10.07Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigations of Flows and Heat Transfer in Turbine Disk Cavities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302955
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorBeaux, Jean-Hugues
    contributor authorGirardeau, Julian
    contributor authorKhelladi, Sofiane
    contributor authorDeligant, Michael
    contributor authorPerilhon, Christelle
    date accessioned2024-12-24T18:54:16Z
    date available2024-12-24T18:54:16Z
    date copyright6/18/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_10_101016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302955
    description abstractIn gas turbines, the stator wells play a key role in the efficiency of the turbomachine. The research for performance gains requires a good understanding and an accurate modeling of the flows and heat transfers occurring in these areas. Within the framework of the European program main annulus gas path interaction (MAGPI) WP1, a two-stage axial turbine test rig provided an experimental database used to validate the computational fluid dynamics (CFD) models. The aim of this study is to setup a numerical methodology using the CFD solver ANSYSFluent to accurately predict the conjugate heat transfer in the stator well area. The validation of the methodology relies on thorough comparison of the results with the MAGPI WP1 experimental temperature/pressure measurements. A geometry with axial cooling injection through lock plate slot was chosen. A Reynolds-averaged Navier–Stokes (RANS) three-dimensional sectorized CFD model of the turbine with conjugate heat transfer was used. It includes main gas path, cavities with labyrinths, disks rotor, the casing, and the nozzle guide vanes (NGV). Mixing planes are placed between the static and rotating frames. Different influences (mesh, turbulence model, thermal boundary conditions, radial labyrinths clearances) were studied and compared with experimental data. As a baseline, the first calculations were performed with a cooling flowrate chosen so that hot gas ingresses from the main stream into the stator well cavity. Good agreements between predicted and measured temperatures/pressures were observed, especially in the vicinity of the stator well. Discrepancies were spotted at the first rotor hub endwall and at the upstream wheelspace and will be discussed. Two other cooling configurations were conducted, one with cooling air exiting from the disk rim cavity to the main gas path and the other with the lowest cooling flowrate and so the highest ingress. Finally, the turbine performance under nonadiabatic conditions has been evaluated with an appropriate efficiency definition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigations of Flows and Heat Transfer in Turbine Disk Cavities
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4065632
    journal fristpage101016-1
    journal lastpage101016-16
    page16
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian