YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cooled Spray Technology for Particulate Reduction in a Heavy-Duty Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 009::page 91024-1
    Author:
    Klingbeil, Adam
    ,
    Tinar, Tristen
    ,
    Ellis, Scott
    DOI: 10.1115/1.4065365
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cooled spray (CS) technology passively reduces particulate matter (PM) emissions from diesel engines compared to non-CS-equipped diesel engines. CS inserts are mounted near the injector nozzle and control mixing so that the fuel and air can premix while limiting combustion near fuel-rich zones, thereby reducing the formation of particulate matter. CS components contain no moving parts and could be installed as a retrofit or built into new engines. However, CS technology is early in its development, and further investigations are needed to understand the overall performance implications and practicality of the technology. In this paper, we investigate several important aspects of CS, providing a clearer picture of some challenges and potential benefits of CS. Two alignment techniques are used to characterize measurement ease and bias, namely, an optical alignment and spray-plug impact alignment. While the optical technique facilitates alignment more easily, a bias was measured between the optical and spray-plug techniques, suggesting the optical technique may have insufficient accuracy without additional corrections. We also evaluate the engine performance of a well-aligned and poorly aligned CS insert, compared to the baseline configuration. The poorly aligned insert shows slower combustion than the baseline and mixed overall performance. However, the well-aligned insert shows faster combustion than the baseline and PM emission reduction at most operating conditions, with some conditions showing PM reduction up to 80%. The results of this paper highlight the alignment challenges of CS technology as well as the potential PM reduction benefit of the technology.
    • Download: (1.897Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cooled Spray Technology for Particulate Reduction in a Heavy-Duty Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302936
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKlingbeil, Adam
    contributor authorTinar, Tristen
    contributor authorEllis, Scott
    date accessioned2024-12-24T18:53:39Z
    date available2024-12-24T18:53:39Z
    date copyright5/3/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_09_091024.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302936
    description abstractCooled spray (CS) technology passively reduces particulate matter (PM) emissions from diesel engines compared to non-CS-equipped diesel engines. CS inserts are mounted near the injector nozzle and control mixing so that the fuel and air can premix while limiting combustion near fuel-rich zones, thereby reducing the formation of particulate matter. CS components contain no moving parts and could be installed as a retrofit or built into new engines. However, CS technology is early in its development, and further investigations are needed to understand the overall performance implications and practicality of the technology. In this paper, we investigate several important aspects of CS, providing a clearer picture of some challenges and potential benefits of CS. Two alignment techniques are used to characterize measurement ease and bias, namely, an optical alignment and spray-plug impact alignment. While the optical technique facilitates alignment more easily, a bias was measured between the optical and spray-plug techniques, suggesting the optical technique may have insufficient accuracy without additional corrections. We also evaluate the engine performance of a well-aligned and poorly aligned CS insert, compared to the baseline configuration. The poorly aligned insert shows slower combustion than the baseline and mixed overall performance. However, the well-aligned insert shows faster combustion than the baseline and PM emission reduction at most operating conditions, with some conditions showing PM reduction up to 80%. The results of this paper highlight the alignment challenges of CS technology as well as the potential PM reduction benefit of the technology.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCooled Spray Technology for Particulate Reduction in a Heavy-Duty Engine
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4065365
    journal fristpage91024-1
    journal lastpage91024-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian