YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    E-Fuels as Reduced Carbon Emission Options

    Source: ASME Open Journal of Engineering:;2024:;volume( 003 ):;issue: 00::page 31017-1
    Author:
    Huey, Carolyn
    ,
    Metghalchi, Hameed
    ,
    Levendis, Yiannis
    DOI: 10.1115/1.4065731
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Synthetic “E-fuels,” or electro-fuels, have been introduced as a potential reduced carbon emissions energy source for power generation and vehicle propulsion applications. Environmental change is needed, with the transportation sector alone producing approximately a quarter of global greenhouse gas (GHG) emissions. Hydrogen, produced from electrolysis to avoid GHG production, is used along with CO2 or nitrogen to generate these electro-fuels, through the Fischer–Tropsch process. Direct air capture (DAC) of atmospheric carbon dioxide or biomass combustion effluents can provide sources for these gases to be combined with hydrogen to generate synthetic methanol, methane, or ammonia—the three most widely discussed E-fuels. In addition, “ER-fuels,” or electrically reformed fuels, are a similar option to E-fuels, where refinery fuel gases, such as ethane or propane, are reformed before synthesis to produce the final fuel. E-fuels, on the other hand, are generated from hydrogen and carbon either captured or produced, not from existing fuels. Redox couples, such as vanadium, can additionally be used as zero emission fuels; they are “electrically rechargeable” in that, through electrolysis, the reducing agent is produced, and then using a fuel cell (FC), the reverse occurs, and electrons plus the oxidizing agent are produced. These synthetic fuels are approximately carbon neutral when the hydrogen is sourced from renewable powered electrolysis, mainly solar and wind energy, as the amount of carbon dioxide consumed is roughly equivalent to the amount produced upon their combustion or FC energy conversion. Combustion in gas turbines or reciprocating piston-cylinder engines and FC electricity generation are the two main uses for extracting energy from E-fuels. Fuel cells are shown to have higher efficiency, but combustion provides fewer infrastructure changes and easier implementation. Both options provide a method for controlling carbon emissions using E-fuels as opportunities for energy storage.
    • Download: (348.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      E-Fuels as Reduced Carbon Emission Options

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302916
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorHuey, Carolyn
    contributor authorMetghalchi, Hameed
    contributor authorLevendis, Yiannis
    date accessioned2024-12-24T18:52:56Z
    date available2024-12-24T18:52:56Z
    date copyright7/5/2024 12:00:00 AM
    date issued2024
    identifier issn2770-3495
    identifier otheraoje_3_031017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302916
    description abstractSynthetic “E-fuels,” or electro-fuels, have been introduced as a potential reduced carbon emissions energy source for power generation and vehicle propulsion applications. Environmental change is needed, with the transportation sector alone producing approximately a quarter of global greenhouse gas (GHG) emissions. Hydrogen, produced from electrolysis to avoid GHG production, is used along with CO2 or nitrogen to generate these electro-fuels, through the Fischer–Tropsch process. Direct air capture (DAC) of atmospheric carbon dioxide or biomass combustion effluents can provide sources for these gases to be combined with hydrogen to generate synthetic methanol, methane, or ammonia—the three most widely discussed E-fuels. In addition, “ER-fuels,” or electrically reformed fuels, are a similar option to E-fuels, where refinery fuel gases, such as ethane or propane, are reformed before synthesis to produce the final fuel. E-fuels, on the other hand, are generated from hydrogen and carbon either captured or produced, not from existing fuels. Redox couples, such as vanadium, can additionally be used as zero emission fuels; they are “electrically rechargeable” in that, through electrolysis, the reducing agent is produced, and then using a fuel cell (FC), the reverse occurs, and electrons plus the oxidizing agent are produced. These synthetic fuels are approximately carbon neutral when the hydrogen is sourced from renewable powered electrolysis, mainly solar and wind energy, as the amount of carbon dioxide consumed is roughly equivalent to the amount produced upon their combustion or FC energy conversion. Combustion in gas turbines or reciprocating piston-cylinder engines and FC electricity generation are the two main uses for extracting energy from E-fuels. Fuel cells are shown to have higher efficiency, but combustion provides fewer infrastructure changes and easier implementation. Both options provide a method for controlling carbon emissions using E-fuels as opportunities for energy storage.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleE-Fuels as Reduced Carbon Emission Options
    typeJournal Paper
    journal volume3
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4065731
    journal fristpage31017-1
    journal lastpage31017-5
    page5
    treeASME Open Journal of Engineering:;2024:;volume( 003 ):;issue: 00
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian