YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scaling of Lean Aeronautical Gas Turbine Combustors

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 006::page 61007-1
    Author:
    Gövert, Simon
    ,
    Gruhlke, Pascal
    ,
    Behrendt, Thomas
    ,
    Janus, Bertram
    DOI: 10.1115/1.4063776
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A numerical procedure is presented for the scaling of lean aeronautical gas turbine combustors to different thrust classes. The procedure considers multiple operating points and aims for a self-similar flow field with respect to a reference configuration. The developed scaling approach relies on an optimization-based workflow which involves automated geometry and numerical grid generation, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations, and postprocessing of the reacting flow field. Kriging is applied as a metamodel to identify new sets of parameters for combustor geometry generation. A generic lean-burn high-pressure aeronautical combustor has been designed to serve as a first verification test case with reactive flow characteristics comparable to real combustion chambers. The burner geometry is parameterized by 23 free parameters which are altered within the scaling process. The definition of a suitable scaling function is essential for the success of the scaling approach. A scaling function based on pressure loss, axial location of heat release, pilot air split, and the temperature profile at the combustor exit is proposed. The developed procedure is tested and applied for the scaling of an internally-staged lean combustor to a lower thrust class considering multiple operating points simultaneously. In total, 65 different combustor variants have been evaluated by the scaling procedure. Simulations were performed for each of these configurations at takeoff, approach, and idle operating conditions. The final combustor configuration, scaled to a lower thrust class, shows good agreement to the reference configuration in terms of the scaling targets and reasonably resembles the emission indices. Integrating the scaling procedure into the design process of future combustion systems could reduce the required design iterations and thereby contribute to significantly reduced development times and costs.
    • Download: (2.251Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scaling of Lean Aeronautical Gas Turbine Combustors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302890
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGövert, Simon
    contributor authorGruhlke, Pascal
    contributor authorBehrendt, Thomas
    contributor authorJanus, Bertram
    date accessioned2024-12-24T18:51:58Z
    date available2024-12-24T18:51:58Z
    date copyright1/4/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_06_061007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302890
    description abstractA numerical procedure is presented for the scaling of lean aeronautical gas turbine combustors to different thrust classes. The procedure considers multiple operating points and aims for a self-similar flow field with respect to a reference configuration. The developed scaling approach relies on an optimization-based workflow which involves automated geometry and numerical grid generation, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations, and postprocessing of the reacting flow field. Kriging is applied as a metamodel to identify new sets of parameters for combustor geometry generation. A generic lean-burn high-pressure aeronautical combustor has been designed to serve as a first verification test case with reactive flow characteristics comparable to real combustion chambers. The burner geometry is parameterized by 23 free parameters which are altered within the scaling process. The definition of a suitable scaling function is essential for the success of the scaling approach. A scaling function based on pressure loss, axial location of heat release, pilot air split, and the temperature profile at the combustor exit is proposed. The developed procedure is tested and applied for the scaling of an internally-staged lean combustor to a lower thrust class considering multiple operating points simultaneously. In total, 65 different combustor variants have been evaluated by the scaling procedure. Simulations were performed for each of these configurations at takeoff, approach, and idle operating conditions. The final combustor configuration, scaled to a lower thrust class, shows good agreement to the reference configuration in terms of the scaling targets and reasonably resembles the emission indices. Integrating the scaling procedure into the design process of future combustion systems could reduce the required design iterations and thereby contribute to significantly reduced development times and costs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleScaling of Lean Aeronautical Gas Turbine Combustors
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4063776
    journal fristpage61007-1
    journal lastpage61007-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian