YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Posterior Covariance Matrix Approximations

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2024:;volume( 009 ):;issue: 001::page 11003-1
    Author:
    Schmid, Abigail C.
    ,
    Andrews, Stephen A.
    DOI: 10.1115/1.4065378
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Davis equation of state (EOS) is commonly used to model thermodynamic relationships for high explosive (HE) reactants. Typically, the parameters in the EOS are calibrated, with uncertainty, using a Bayesian framework and Markov Chain Monte Carlo (MCMC) methods. However, MCMC methods are computationally expensive, especially for complex models with many parameters. This paper provides a comparison between MCMC and less computationally expensive Variational methods (Variational Bayesian and Hessian Variational Bayesian) for computing the posterior distribution and approximating the posterior covariance matrix based on heterogeneous experimental data. All three methods recover similar posterior distributions and posterior covariance matrices. This study demonstrates that for this EOS parameter calibration application, the assumptions made in the two Variational methods significantly reduce the computational cost but do not substantially change the results compared to MCMC.
    • Download: (4.155Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Posterior Covariance Matrix Approximations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302723
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorSchmid, Abigail C.
    contributor authorAndrews, Stephen A.
    date accessioned2024-12-24T18:46:28Z
    date available2024-12-24T18:46:28Z
    date copyright5/13/2024 12:00:00 AM
    date issued2024
    identifier issn2377-2158
    identifier othervvuq_009_01_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302723
    description abstractThe Davis equation of state (EOS) is commonly used to model thermodynamic relationships for high explosive (HE) reactants. Typically, the parameters in the EOS are calibrated, with uncertainty, using a Bayesian framework and Markov Chain Monte Carlo (MCMC) methods. However, MCMC methods are computationally expensive, especially for complex models with many parameters. This paper provides a comparison between MCMC and less computationally expensive Variational methods (Variational Bayesian and Hessian Variational Bayesian) for computing the posterior distribution and approximating the posterior covariance matrix based on heterogeneous experimental data. All three methods recover similar posterior distributions and posterior covariance matrices. This study demonstrates that for this EOS parameter calibration application, the assumptions made in the two Variational methods significantly reduce the computational cost but do not substantially change the results compared to MCMC.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePosterior Covariance Matrix Approximations
    typeJournal Paper
    journal volume9
    journal issue1
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4065378
    journal fristpage11003-1
    journal lastpage11003-10
    page10
    treeJournal of Verification, Validation and Uncertainty Quantification:;2024:;volume( 009 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian