YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cooling Performance Improvement for Two Hot Elastic Plates by Using Double Channels With Rotating Cylinders

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 009::page 91002-1
    Author:
    Selimefendigil, Fatih
    ,
    Öztop, Hakan F.
    DOI: 10.1115/1.4065468
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Alternative cooling systems that can be used for thermal management in different technological applications such as in batteries, solar panels, electronic systems, and in diverse heat transfer equipments are needed. This study uses a hybrid channel system with rotating circular cylinders to explore the cooling of two heated elastic plates. The numerical analysis of a coupled fluid–structure–thermal system with rotating cylinders is done using the finite element technique with arbitrary Lagrangian–Eulerian (ALE). The study is carried out for different values of the Reynolds number (Re) in the upper channel flow (between 200 and 1000), the nondimensional rotational speeds of the cylinders (Ω in the range between −1000 and 1000), and the nondimensional location of the cylinders (between 0.4 and 1) taking into account the cooling of both the rigid and elastic plates. Rigid plates have better cooling performance than elastic ones. The cooling performance increases for both rigid and elastic plates, up to 26.1% and 31.7%, respectively, at the maximum upper channel flow Re. For elastic and rigid plates, counter-clockwise (CCW) rotation at maximum speed increases cooling performance by 18.5% and 19%, respectively, but clockwise (CW) rotation increments cooling performance by only 7%. The rigid plate’s cooling performance increases by 23.6% when rotation is activated at its maximum speed as opposed to a cooling system without cylinders. Thermal performance varies between 26% and 29% when the cylinder is positioned horizontally differently. By using optimization, the cooling performance increase with rotating cylinders at Re = 200, which is determined to be 73.6% more than that of the case without cylinders. Optimization results in an extra 11.2% increase in cooling performance at Re = 1000 when compared to the parametric computational fluid dynamics (CFD) scenario.
    • Download: (899.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cooling Performance Improvement for Two Hot Elastic Plates by Using Double Channels With Rotating Cylinders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302614
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorSelimefendigil, Fatih
    contributor authorÖztop, Hakan F.
    date accessioned2024-12-24T18:43:01Z
    date available2024-12-24T18:43:01Z
    date copyright6/6/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_9_091002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302614
    description abstractAlternative cooling systems that can be used for thermal management in different technological applications such as in batteries, solar panels, electronic systems, and in diverse heat transfer equipments are needed. This study uses a hybrid channel system with rotating circular cylinders to explore the cooling of two heated elastic plates. The numerical analysis of a coupled fluid–structure–thermal system with rotating cylinders is done using the finite element technique with arbitrary Lagrangian–Eulerian (ALE). The study is carried out for different values of the Reynolds number (Re) in the upper channel flow (between 200 and 1000), the nondimensional rotational speeds of the cylinders (Ω in the range between −1000 and 1000), and the nondimensional location of the cylinders (between 0.4 and 1) taking into account the cooling of both the rigid and elastic plates. Rigid plates have better cooling performance than elastic ones. The cooling performance increases for both rigid and elastic plates, up to 26.1% and 31.7%, respectively, at the maximum upper channel flow Re. For elastic and rigid plates, counter-clockwise (CCW) rotation at maximum speed increases cooling performance by 18.5% and 19%, respectively, but clockwise (CW) rotation increments cooling performance by only 7%. The rigid plate’s cooling performance increases by 23.6% when rotation is activated at its maximum speed as opposed to a cooling system without cylinders. Thermal performance varies between 26% and 29% when the cylinder is positioned horizontally differently. By using optimization, the cooling performance increase with rotating cylinders at Re = 200, which is determined to be 73.6% more than that of the case without cylinders. Optimization results in an extra 11.2% increase in cooling performance at Re = 1000 when compared to the parametric computational fluid dynamics (CFD) scenario.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCooling Performance Improvement for Two Hot Elastic Plates by Using Double Channels With Rotating Cylinders
    typeJournal Paper
    journal volume16
    journal issue9
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4065468
    journal fristpage91002-1
    journal lastpage91002-7
    page7
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian