YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Hydraulic Analysis of Turbulent Flow of Superheated Steam Through Multiple Configurations of 3D Angular Piping Bend in Power Plant Installations

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 006::page 61003-1
    Author:
    Khan, Mohammad
    ,
    Haque, Jehad
    ,
    Putul, Lubon
    ,
    Sohel, Shamsul Huda
    DOI: 10.1115/1.4065125
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: One of the most vulnerable parts in high-pressure and temperature pipeline networks in steam turbine power plant installations is pipe bends, due to intense fluctuation of velocity and pressure of the superheated steam flowing through the piping bend. On the other hand, because of unique chemical and physical properties, the transportation of superheated steam can adversely effect on the integrity of the pipe bends in the piping network. Therefore, the potential risk of pipeline failure becomes more probable at bends. Therefore, to ensure the survivability of the piping network, thorough investigations of the superheated steam flowing through pipe bends are of great significance in better understanding its flow behavior. However, to predict flow behavior at piping bend, intensive research by direct experiment at high temperature and pressure might not be possible to some extent. In that case, computer codes and models can help us analyze flow behavior of superheated steam at pipe bends. The current work is a computational fluid dynamics investigation, where numerical examination is carried out by commercial code ansys fluent for thermal hydraulic analysis of flow behavior of superheated steam through multiple configurations of 3D angular piping bend: 90 deg, 120 deg, and 135 deg. Validation of credibility of the computational approach is done against Sudo et al.'s experiment. With relatively good agreement between the experiment and numerical result using air flowing through 90 deg elbow, single-phase turbulent flow of superheated steam is examined by the application of realizable turbulence model (k–ɛ). The final assessment of the computed results has been done using qualitative and quantitative analyses. The study reveals that unlike the pressure profiles, the radial velocity profiles at the bend exit are noticeably different from those at the bend inlet, since they exhibit more rounded peaks and gentler velocity gradients. The study also shows that the radial pressure and velocity profiles do not display any sign of the existence of a pair of vortices.
    • Download: (1.178Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Hydraulic Analysis of Turbulent Flow of Superheated Steam Through Multiple Configurations of 3D Angular Piping Bend in Power Plant Installations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302580
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorKhan, Mohammad
    contributor authorHaque, Jehad
    contributor authorPutul, Lubon
    contributor authorSohel, Shamsul Huda
    date accessioned2024-12-24T18:41:58Z
    date available2024-12-24T18:41:58Z
    date copyright4/8/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_6_061003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302580
    description abstractOne of the most vulnerable parts in high-pressure and temperature pipeline networks in steam turbine power plant installations is pipe bends, due to intense fluctuation of velocity and pressure of the superheated steam flowing through the piping bend. On the other hand, because of unique chemical and physical properties, the transportation of superheated steam can adversely effect on the integrity of the pipe bends in the piping network. Therefore, the potential risk of pipeline failure becomes more probable at bends. Therefore, to ensure the survivability of the piping network, thorough investigations of the superheated steam flowing through pipe bends are of great significance in better understanding its flow behavior. However, to predict flow behavior at piping bend, intensive research by direct experiment at high temperature and pressure might not be possible to some extent. In that case, computer codes and models can help us analyze flow behavior of superheated steam at pipe bends. The current work is a computational fluid dynamics investigation, where numerical examination is carried out by commercial code ansys fluent for thermal hydraulic analysis of flow behavior of superheated steam through multiple configurations of 3D angular piping bend: 90 deg, 120 deg, and 135 deg. Validation of credibility of the computational approach is done against Sudo et al.'s experiment. With relatively good agreement between the experiment and numerical result using air flowing through 90 deg elbow, single-phase turbulent flow of superheated steam is examined by the application of realizable turbulence model (k–ɛ). The final assessment of the computed results has been done using qualitative and quantitative analyses. The study reveals that unlike the pressure profiles, the radial velocity profiles at the bend exit are noticeably different from those at the bend inlet, since they exhibit more rounded peaks and gentler velocity gradients. The study also shows that the radial pressure and velocity profiles do not display any sign of the existence of a pair of vortices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Hydraulic Analysis of Turbulent Flow of Superheated Steam Through Multiple Configurations of 3D Angular Piping Bend in Power Plant Installations
    typeJournal Paper
    journal volume16
    journal issue6
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4065125
    journal fristpage61003-1
    journal lastpage61003-8
    page8
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian