YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Thermomechanical Stress of High-Temperature Ignition Surface Caused by Drop–Wall Interaction at Engine Conditions

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 005::page 51006-1
    Author:
    Ahamed, Sheikh
    ,
    Kong, Song-Charng
    DOI: 10.1115/1.4064820
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Drop–wall interaction is a complex phenomenon encountered in diverse industrial applications. An important example is fuel droplets impinging on a high-temperature ignition plug in a direct-injection compression-ignition engine. The ignition plug, comprised of heat-resistant materials, will experience thermal shock due to abrupt temperature changes. The ensuing temperature fluctuation in the solid wall induces thermal stress, and if this stress surpasses the material's strength in that mode, failure can occur. Therefore, it is imperative to analyze the temperature dynamics on the high-temperature surface to enhance material durability. This study focuses on drop–wall interactions in the engine environment. Utilizing the Smoothed Particle Hydrodynamics (SPH) method, this research simulates fuel droplet impingement on an ignition plug with various materials to characterize heat transfer, thermal penetration, and temperature distributions in the heated wall. The investigation also delves into the behavior of ceramic material, specifically silicon nitride, assessing its thermomechanical stress and durability based on the stress–number of cycles (S-N) curve. Thermal stress is computed by considering temperature gradients and material properties, while mechanical stress is evaluated based on the bending momentum and momentum flux induced by the spray. A parametric study explores diverse materials such as tungsten carbide, iron, stainless steel, carbon steel, and aluminum. Results indicate that thermal stress outweighs bending and spray-induced stress. Moreover, the analysis reveals that silicon nitride exhibits the lowest thermal stress distribution and superior durability, potentially capable of operating for infinite cycles under engine-relevant conditions.
    • Download: (1.429Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Thermomechanical Stress of High-Temperature Ignition Surface Caused by Drop–Wall Interaction at Engine Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302577
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorAhamed, Sheikh
    contributor authorKong, Song-Charng
    date accessioned2024-12-24T18:41:47Z
    date available2024-12-24T18:41:47Z
    date copyright3/12/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_5_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302577
    description abstractDrop–wall interaction is a complex phenomenon encountered in diverse industrial applications. An important example is fuel droplets impinging on a high-temperature ignition plug in a direct-injection compression-ignition engine. The ignition plug, comprised of heat-resistant materials, will experience thermal shock due to abrupt temperature changes. The ensuing temperature fluctuation in the solid wall induces thermal stress, and if this stress surpasses the material's strength in that mode, failure can occur. Therefore, it is imperative to analyze the temperature dynamics on the high-temperature surface to enhance material durability. This study focuses on drop–wall interactions in the engine environment. Utilizing the Smoothed Particle Hydrodynamics (SPH) method, this research simulates fuel droplet impingement on an ignition plug with various materials to characterize heat transfer, thermal penetration, and temperature distributions in the heated wall. The investigation also delves into the behavior of ceramic material, specifically silicon nitride, assessing its thermomechanical stress and durability based on the stress–number of cycles (S-N) curve. Thermal stress is computed by considering temperature gradients and material properties, while mechanical stress is evaluated based on the bending momentum and momentum flux induced by the spray. A parametric study explores diverse materials such as tungsten carbide, iron, stainless steel, carbon steel, and aluminum. Results indicate that thermal stress outweighs bending and spray-induced stress. Moreover, the analysis reveals that silicon nitride exhibits the lowest thermal stress distribution and superior durability, potentially capable of operating for infinite cycles under engine-relevant conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Thermomechanical Stress of High-Temperature Ignition Surface Caused by Drop–Wall Interaction at Engine Conditions
    typeJournal Paper
    journal volume16
    journal issue5
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4064820
    journal fristpage51006-1
    journal lastpage51006-12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian