YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermodynamic Performance Assessment of Air Conditioner Combining Evaporative and Passive Cooling

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 005::page 51003-1
    Author:
    Gupta, Sunil Kumar
    ,
    Arora, B. B.
    ,
    Arora, Akhilesh
    DOI: 10.1115/1.4064743
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The global increase in refrigeration and air conditioning applications poses a severe problem as regards the environmental degradation caused by greenhouse gas emissions. This study introduces a novel approach wherein both evaporative cooling and passive cooling are integrated to unveil notable enhancements in energy and exergy compared to conventional air conditioning systems. Therefore, this work aims to enhance the thermal performance of a 1.5-ton split air conditioner (SAC) employing outdoor (condenser) evaporative and indoor passive cooling (EPC). The heat removal capacity of a condenser and SAC performance are greatly affected by the air temperature at the condenser inlet. Evaporative cooling serves to lower outdoor air temperature, while passive cooling minimizes the indoor cooling load. Design parameters encompass outdoor temperature (Ta = 30–44 °C), relative humidity (RH = 20–80%), and temperature reduction due to passive cooling (ΔTR = 0.5–5 °C). A model is developed to calculate the temperature reductions of outdoor air through evaporative cooling in diverse climatic conditions, while the range of passive cooling degrees is obtained from previous experiments. Results indicate a substantial enhancement in the thermodynamic performance of the proposed system. The maximum coefficient of performance (COP) improvement of 68.66% is achieved at 44 °C outside temperature and 20% relative humidity. Annual energy savings, under extreme operating conditions, range from 358.4 kWh to 2116.8 kWh. The EPC SAC is identified as more sustainable than the conventional split air conditioner (CSAC). Moreover, the projected system is anticipated to recoup its costs within a relatively short period of 1.42 years.
    • Download: (854.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermodynamic Performance Assessment of Air Conditioner Combining Evaporative and Passive Cooling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302574
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorGupta, Sunil Kumar
    contributor authorArora, B. B.
    contributor authorArora, Akhilesh
    date accessioned2024-12-24T18:41:42Z
    date available2024-12-24T18:41:42Z
    date copyright3/12/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_5_051003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302574
    description abstractThe global increase in refrigeration and air conditioning applications poses a severe problem as regards the environmental degradation caused by greenhouse gas emissions. This study introduces a novel approach wherein both evaporative cooling and passive cooling are integrated to unveil notable enhancements in energy and exergy compared to conventional air conditioning systems. Therefore, this work aims to enhance the thermal performance of a 1.5-ton split air conditioner (SAC) employing outdoor (condenser) evaporative and indoor passive cooling (EPC). The heat removal capacity of a condenser and SAC performance are greatly affected by the air temperature at the condenser inlet. Evaporative cooling serves to lower outdoor air temperature, while passive cooling minimizes the indoor cooling load. Design parameters encompass outdoor temperature (Ta = 30–44 °C), relative humidity (RH = 20–80%), and temperature reduction due to passive cooling (ΔTR = 0.5–5 °C). A model is developed to calculate the temperature reductions of outdoor air through evaporative cooling in diverse climatic conditions, while the range of passive cooling degrees is obtained from previous experiments. Results indicate a substantial enhancement in the thermodynamic performance of the proposed system. The maximum coefficient of performance (COP) improvement of 68.66% is achieved at 44 °C outside temperature and 20% relative humidity. Annual energy savings, under extreme operating conditions, range from 358.4 kWh to 2116.8 kWh. The EPC SAC is identified as more sustainable than the conventional split air conditioner (CSAC). Moreover, the projected system is anticipated to recoup its costs within a relatively short period of 1.42 years.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermodynamic Performance Assessment of Air Conditioner Combining Evaporative and Passive Cooling
    typeJournal Paper
    journal volume16
    journal issue5
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4064743
    journal fristpage51003-1
    journal lastpage51003-12
    page12
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian