YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pathways Toward Improving the Energy Efficiency of Residential Air-Conditioning Systems in Saudi Arabia

    Source: Journal of Solar Energy Engineering:;2024:;volume( 146 ):;issue: 005::page 51010-1
    Author:
    Alotaibi, Abdulaziz M.
    ,
    Makhdoom, Taha K.
    ,
    Alquaity, Awad B. S.
    DOI: 10.1115/1.4065973
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In Saudi Arabia, the residential electricity consumption approaches 50%, primarily driven by air conditioners (AC). This study explores the potential energy savings and carbon dioxide (CO2) emission reductions up to 2030 through three scenarios: business as usual (BAU), continuous improvement scenario (CIS), and accelerated improvement scenario (AIS). BAU scenario assumes that the current energy efficiency ratio (EER) of 11.8 BTU/Wh is maintained until 2030. CIS considers a 5% EER improvement in new AC stock every two or five years, while AIS assumes a 10% improvement in the EER at the same intervals. Additionally, energy savings and emission reductions possible from varying adoption levels of a new refrigerant (R32) are estimated for three scenarios. Finally, the CO2 emission reduction under each scenario is computed for two extreme cases of grid emission factor. BAU scenario predicts energy savings of up to 17.7 TWh in 2030 compared to 2020 energy consumption figures. AIS with two-year intervals results in additional energy savings of 10.1 TWh in 2030 and cumulative energy savings of 37.1 TWh over a decade compared to the BAU scenario. Even CIS with five-year intervals yields additional energy savings of 1.69 TWh in 2030 and 5.1 TWh cumulatively compared to the BAU scenario. In comparison, the introduction of the new refrigerant results in cumulative energy savings of 10.2 TWh in the best-case scenario. These findings emphasize the importance of enhancing the EER of residential AC systems as a priority in energy efficiency policy.
    • Download: (717.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pathways Toward Improving the Energy Efficiency of Residential Air-Conditioning Systems in Saudi Arabia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302452
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorAlotaibi, Abdulaziz M.
    contributor authorMakhdoom, Taha K.
    contributor authorAlquaity, Awad B. S.
    date accessioned2024-12-24T18:37:17Z
    date available2024-12-24T18:37:17Z
    date copyright7/30/2024 12:00:00 AM
    date issued2024
    identifier issn0199-6231
    identifier othersol_146_5_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302452
    description abstractIn Saudi Arabia, the residential electricity consumption approaches 50%, primarily driven by air conditioners (AC). This study explores the potential energy savings and carbon dioxide (CO2) emission reductions up to 2030 through three scenarios: business as usual (BAU), continuous improvement scenario (CIS), and accelerated improvement scenario (AIS). BAU scenario assumes that the current energy efficiency ratio (EER) of 11.8 BTU/Wh is maintained until 2030. CIS considers a 5% EER improvement in new AC stock every two or five years, while AIS assumes a 10% improvement in the EER at the same intervals. Additionally, energy savings and emission reductions possible from varying adoption levels of a new refrigerant (R32) are estimated for three scenarios. Finally, the CO2 emission reduction under each scenario is computed for two extreme cases of grid emission factor. BAU scenario predicts energy savings of up to 17.7 TWh in 2030 compared to 2020 energy consumption figures. AIS with two-year intervals results in additional energy savings of 10.1 TWh in 2030 and cumulative energy savings of 37.1 TWh over a decade compared to the BAU scenario. Even CIS with five-year intervals yields additional energy savings of 1.69 TWh in 2030 and 5.1 TWh cumulatively compared to the BAU scenario. In comparison, the introduction of the new refrigerant results in cumulative energy savings of 10.2 TWh in the best-case scenario. These findings emphasize the importance of enhancing the EER of residential AC systems as a priority in energy efficiency policy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePathways Toward Improving the Energy Efficiency of Residential Air-Conditioning Systems in Saudi Arabia
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4065973
    journal fristpage51010-1
    journal lastpage51010-8
    page8
    treeJournal of Solar Energy Engineering:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian