YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermodynamic Performance Investigation of Environmentally Friendly Working Fluids in a Geothermal Integrated Pumped Thermal Energy Storage System

    Source: Journal of Solar Energy Engineering:;2024:;volume( 146 ):;issue: 005::page 51008-1
    Author:
    Mwesigye, Aggrey
    DOI: 10.1115/1.4065554
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Among the available energy storage technologies, pumped thermal energy storage (PTES) is emerging as a potential solution for large-scale electrical energy storage with high round-trip efficiencies and no geographical limitations. However, PTES requires a low-cost, high-temperature heat source to achieve reasonable round-trip efficiencies. Moreover, organic Rankine cycle-based PTES systems require high-performance and environmentally friendly working fluids. In this study, the thermodynamic performance of a geothermal integrated PTES system using environmentally friendly working fluids is investigated. The mathematical model of the geothermal integrated PTES system is developed using the first and second laws of thermodynamics and implemented in Engineering Equation Solver (EES). With the developed model, the thermodynamic performance of the PTES system for different working fluids, including butene, cyclopentane, isobutene, R1233zd(E), R1234ze(Z), R1224yd(Z), HFO1336mzz(Z), n-hexane, and n-pentane was investigated. For geothermal fluid outlet temperatures between 60 °C and 120 °C and geothermal fluid inlet and outlet temperature differences across the evaporator between 20 °C and 60 °C, the net power ratio, i.e., the ratio of the electrical energy discharged to the electrical energy used to run the charging cycle, is between 0.25 and 1.40. This shows that the system has the potential to give back more than 100% of the electrical energy used during charging under certain conditions. High net power ratios are obtained for a combination of high source temperatures and low geothermal fluid inlet and outlet temperature differences.
    • Download: (957.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermodynamic Performance Investigation of Environmentally Friendly Working Fluids in a Geothermal Integrated Pumped Thermal Energy Storage System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302451
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorMwesigye, Aggrey
    date accessioned2024-12-24T18:37:15Z
    date available2024-12-24T18:37:15Z
    date copyright6/13/2024 12:00:00 AM
    date issued2024
    identifier issn0199-6231
    identifier othersol_146_5_051008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302451
    description abstractAmong the available energy storage technologies, pumped thermal energy storage (PTES) is emerging as a potential solution for large-scale electrical energy storage with high round-trip efficiencies and no geographical limitations. However, PTES requires a low-cost, high-temperature heat source to achieve reasonable round-trip efficiencies. Moreover, organic Rankine cycle-based PTES systems require high-performance and environmentally friendly working fluids. In this study, the thermodynamic performance of a geothermal integrated PTES system using environmentally friendly working fluids is investigated. The mathematical model of the geothermal integrated PTES system is developed using the first and second laws of thermodynamics and implemented in Engineering Equation Solver (EES). With the developed model, the thermodynamic performance of the PTES system for different working fluids, including butene, cyclopentane, isobutene, R1233zd(E), R1234ze(Z), R1224yd(Z), HFO1336mzz(Z), n-hexane, and n-pentane was investigated. For geothermal fluid outlet temperatures between 60 °C and 120 °C and geothermal fluid inlet and outlet temperature differences across the evaporator between 20 °C and 60 °C, the net power ratio, i.e., the ratio of the electrical energy discharged to the electrical energy used to run the charging cycle, is between 0.25 and 1.40. This shows that the system has the potential to give back more than 100% of the electrical energy used during charging under certain conditions. High net power ratios are obtained for a combination of high source temperatures and low geothermal fluid inlet and outlet temperature differences.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermodynamic Performance Investigation of Environmentally Friendly Working Fluids in a Geothermal Integrated Pumped Thermal Energy Storage System
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4065554
    journal fristpage51008-1
    journal lastpage51008-9
    page9
    treeJournal of Solar Energy Engineering:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian