YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat and Mass Transfer Model for a Counter-Flow Moving Packed-Bed Oxidation Reactor/Heat Exchanger

    Source: Journal of Solar Energy Engineering:;2024:;volume( 146 ):;issue: 005::page 51006-1
    Author:
    Mishra, Ashreet
    ,
    Korba, David
    ,
    Zhao, Jian
    ,
    Li, Like
    DOI: 10.1115/1.4065040
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Particle-based thermochemical energy storage (TCES) through metal oxide redox cycling is advantageous compared to traditional sensible and latent heat storage (SHS and LHS) due to its higher operating temperature and energy density, and the capability for long-duration storage. However, overall system performance also depends on the efficiency of the particle-to-working fluid heat exchangers (HXs). Moving packed-bed particle-to-supercritical CO2 (sCO2) HXs have been extensively studied in SHS systems. Integrating the oxidation reactor (OR) for discharging with a particle-to-sCO2 HX is a natural choice, for which detailed analysis is needed for OR/HX design and operation. In this work, a 2D continuum heat and mass transfer model coupling transport phenomena and reaction kinetics is developed for a shell-and-plate moving-bed OR/HX. For the baseline design, the model predicted ∼75% particle bed extent of oxidation at the channel exit, yielding a total heat transfer rate of 16.71 kW for 1.0 m2 heat transfer area per channel, while the same design with inert particles (SHS only) gives only 4.62 kW. A parametric study was also conducted to evaluate the effects of particle, air, and sCO2 flowrates, channel height and width, and average particle diameters. It is found that the respective heat transfer rate and sCO2 outlet temperature can approach ∼25 kW and >1000 °C for optimized designs for the OR/HX. The present model will be valuable for further OR/HX design, scale-up, and optimization of operating conditions.
    • Download: (1.490Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat and Mass Transfer Model for a Counter-Flow Moving Packed-Bed Oxidation Reactor/Heat Exchanger

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302448
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorMishra, Ashreet
    contributor authorKorba, David
    contributor authorZhao, Jian
    contributor authorLi, Like
    date accessioned2024-12-24T18:37:09Z
    date available2024-12-24T18:37:09Z
    date copyright5/24/2024 12:00:00 AM
    date issued2024
    identifier issn0199-6231
    identifier othersol_146_5_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302448
    description abstractParticle-based thermochemical energy storage (TCES) through metal oxide redox cycling is advantageous compared to traditional sensible and latent heat storage (SHS and LHS) due to its higher operating temperature and energy density, and the capability for long-duration storage. However, overall system performance also depends on the efficiency of the particle-to-working fluid heat exchangers (HXs). Moving packed-bed particle-to-supercritical CO2 (sCO2) HXs have been extensively studied in SHS systems. Integrating the oxidation reactor (OR) for discharging with a particle-to-sCO2 HX is a natural choice, for which detailed analysis is needed for OR/HX design and operation. In this work, a 2D continuum heat and mass transfer model coupling transport phenomena and reaction kinetics is developed for a shell-and-plate moving-bed OR/HX. For the baseline design, the model predicted ∼75% particle bed extent of oxidation at the channel exit, yielding a total heat transfer rate of 16.71 kW for 1.0 m2 heat transfer area per channel, while the same design with inert particles (SHS only) gives only 4.62 kW. A parametric study was also conducted to evaluate the effects of particle, air, and sCO2 flowrates, channel height and width, and average particle diameters. It is found that the respective heat transfer rate and sCO2 outlet temperature can approach ∼25 kW and >1000 °C for optimized designs for the OR/HX. The present model will be valuable for further OR/HX design, scale-up, and optimization of operating conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat and Mass Transfer Model for a Counter-Flow Moving Packed-Bed Oxidation Reactor/Heat Exchanger
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4065040
    journal fristpage51006-1
    journal lastpage51006-15
    page15
    treeJournal of Solar Energy Engineering:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian