YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Initial Static Shear Stress on Liquefaction Triggering of Coarse-Grained Materials

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 010::page 04024099-1
    Author:
    Jongchan Kim
    ,
    Adda Athanasopoulos-Zekkos
    ,
    Dimitrios Zekkos
    DOI: 10.1061/JGGEFK.GTENG-12282
    Publisher: American Society of Civil Engineers
    Abstract: Soil liquefaction response is significantly affected by soil gradation (particle size, angularity, coefficient of uniformity) and density. However, the literature on the factors affecting liquefaction resistance with initial static shear stress (e.g., sloping ground) is more limited and primarily based on clean, poorly graded sands. As a result, the influence of particle size and gradation on the liquefaction potential of soils with initial shear stress is overlooked. In this study, 223 large-size cyclic simple shear tests were conducted on poorly and well-graded sands and gravels to evaluate the effects of soil gradation on the liquefaction resistance with the presence of initial static shear stress. Sandy and gravelly soils with coefficients of uniformity ranging from 1.6 to 42 were tested in a large-scale cyclic simple shear device under constant volume conditions, and the initial static shear stress correction factor Kα values were obtained. The results show that poorly graded sand specimens exhibit flow liquefaction, have a more significant vertical effective stress reduction as the initial static shear stress increased, but also exhibit beneficial effects of initial static shear stress even if loosely packed, mainly due to their more dilative nature. Well-graded sandy soils, on the other hand, did not have as an abrupt loss of stiffness compared to poorly graded sand specimens, but due to their higher coefficient of uniformity may be more contractive, causing more pronounced shear strain development at the last few cycles. Gravel content also affected the void ratio of sand, which influenced the onset of strain softening or hardening during cyclic loading. Dense specimens with initial static shear stress exhibit cyclic mobility, but this may not necessarily provide beneficial effects of the Kα correction factor, especially for higher coefficients of uniformity. The experimental results suggest that the widely used Kα correction factor approaches that were originally suggested based on poorly graded sand may be overoptimistic for both loose and dense soils when considering a broader spectrum of soils such as those encountered in engineering practice. It is proposed that the Kα correction factor should consider not only relative density and initial static shear stress but also particle size and gradation (i.e., determining the gravel content and the coefficient of uniformity), as well as angularity.
    • Download: (5.242Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Initial Static Shear Stress on Liquefaction Triggering of Coarse-Grained Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4298968
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorJongchan Kim
    contributor authorAdda Athanasopoulos-Zekkos
    contributor authorDimitrios Zekkos
    date accessioned2024-12-24T10:27:51Z
    date available2024-12-24T10:27:51Z
    date copyright10/1/2024 12:00:00 AM
    date issued2024
    identifier otherJGGEFK.GTENG-12282.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298968
    description abstractSoil liquefaction response is significantly affected by soil gradation (particle size, angularity, coefficient of uniformity) and density. However, the literature on the factors affecting liquefaction resistance with initial static shear stress (e.g., sloping ground) is more limited and primarily based on clean, poorly graded sands. As a result, the influence of particle size and gradation on the liquefaction potential of soils with initial shear stress is overlooked. In this study, 223 large-size cyclic simple shear tests were conducted on poorly and well-graded sands and gravels to evaluate the effects of soil gradation on the liquefaction resistance with the presence of initial static shear stress. Sandy and gravelly soils with coefficients of uniformity ranging from 1.6 to 42 were tested in a large-scale cyclic simple shear device under constant volume conditions, and the initial static shear stress correction factor Kα values were obtained. The results show that poorly graded sand specimens exhibit flow liquefaction, have a more significant vertical effective stress reduction as the initial static shear stress increased, but also exhibit beneficial effects of initial static shear stress even if loosely packed, mainly due to their more dilative nature. Well-graded sandy soils, on the other hand, did not have as an abrupt loss of stiffness compared to poorly graded sand specimens, but due to their higher coefficient of uniformity may be more contractive, causing more pronounced shear strain development at the last few cycles. Gravel content also affected the void ratio of sand, which influenced the onset of strain softening or hardening during cyclic loading. Dense specimens with initial static shear stress exhibit cyclic mobility, but this may not necessarily provide beneficial effects of the Kα correction factor, especially for higher coefficients of uniformity. The experimental results suggest that the widely used Kα correction factor approaches that were originally suggested based on poorly graded sand may be overoptimistic for both loose and dense soils when considering a broader spectrum of soils such as those encountered in engineering practice. It is proposed that the Kα correction factor should consider not only relative density and initial static shear stress but also particle size and gradation (i.e., determining the gravel content and the coefficient of uniformity), as well as angularity.
    publisherAmerican Society of Civil Engineers
    titleThe Effect of Initial Static Shear Stress on Liquefaction Triggering of Coarse-Grained Materials
    typeJournal Article
    journal volume150
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12282
    journal fristpage04024099-1
    journal lastpage04024099-23
    page23
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian