Show simple item record

contributor authorJongchan Kim
contributor authorAdda Athanasopoulos-Zekkos
contributor authorDimitrios Zekkos
date accessioned2024-12-24T10:27:51Z
date available2024-12-24T10:27:51Z
date copyright10/1/2024 12:00:00 AM
date issued2024
identifier otherJGGEFK.GTENG-12282.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4298968
description abstractSoil liquefaction response is significantly affected by soil gradation (particle size, angularity, coefficient of uniformity) and density. However, the literature on the factors affecting liquefaction resistance with initial static shear stress (e.g., sloping ground) is more limited and primarily based on clean, poorly graded sands. As a result, the influence of particle size and gradation on the liquefaction potential of soils with initial shear stress is overlooked. In this study, 223 large-size cyclic simple shear tests were conducted on poorly and well-graded sands and gravels to evaluate the effects of soil gradation on the liquefaction resistance with the presence of initial static shear stress. Sandy and gravelly soils with coefficients of uniformity ranging from 1.6 to 42 were tested in a large-scale cyclic simple shear device under constant volume conditions, and the initial static shear stress correction factor Kα values were obtained. The results show that poorly graded sand specimens exhibit flow liquefaction, have a more significant vertical effective stress reduction as the initial static shear stress increased, but also exhibit beneficial effects of initial static shear stress even if loosely packed, mainly due to their more dilative nature. Well-graded sandy soils, on the other hand, did not have as an abrupt loss of stiffness compared to poorly graded sand specimens, but due to their higher coefficient of uniformity may be more contractive, causing more pronounced shear strain development at the last few cycles. Gravel content also affected the void ratio of sand, which influenced the onset of strain softening or hardening during cyclic loading. Dense specimens with initial static shear stress exhibit cyclic mobility, but this may not necessarily provide beneficial effects of the Kα correction factor, especially for higher coefficients of uniformity. The experimental results suggest that the widely used Kα correction factor approaches that were originally suggested based on poorly graded sand may be overoptimistic for both loose and dense soils when considering a broader spectrum of soils such as those encountered in engineering practice. It is proposed that the Kα correction factor should consider not only relative density and initial static shear stress but also particle size and gradation (i.e., determining the gravel content and the coefficient of uniformity), as well as angularity.
publisherAmerican Society of Civil Engineers
titleThe Effect of Initial Static Shear Stress on Liquefaction Triggering of Coarse-Grained Materials
typeJournal Article
journal volume150
journal issue10
journal titleJournal of Geotechnical and Geoenvironmental Engineering
identifier doi10.1061/JGGEFK.GTENG-12282
journal fristpage04024099-1
journal lastpage04024099-23
page23
treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record