YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An In-Depth Comparison of Straight and Wavy Microchannel Heat Exchangers

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 005::page 51007-1
    Author:
    Pandey, Vishwas Kumar
    ,
    Negi, Vinay Pratap Singh
    ,
    Ranganayakulu, Chennu
    DOI: 10.1115/1.4064985
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents extensive fluid flow and Heat-Transfer studies conducted using a commercial computational fluid dynamics (CFD) package known as CFD-ACE® to elaborate and expand on the reference studies available for ceramic-compact counterflow microchannel heat exchangers (MCHEs). The computational 3D model was developed using an experimentally tested MCHE and validated with experimental data with 3–5% variation for hot fluid and 6–12% variation for cold fluid for the entire design of experiments (DoEs). This study aimed to identify the performance of novel microchannel shapes using numerical analysis. The MCHE has good heat exchange properties, a compact design at industrial throughput, and a lower inner volume. During the study and identification of novel channel shapes, the segmented wavy MCHE was evaluated. The results were compared with those of the same volume and area straight MCHE baseline design under various identical operating conditions. Although the performance in terms of effectiveness is increased up to ∼12–25% in wavy MCHE with respect to straight MCHE simultaneously, the pressure drop is also increased by ∼60–80% under the same operating conditions. Therefore, performance and trade-offs are required to make the correct decision regarding feasibility. The effectiveness of the heat-transfer enhancement was also evaluated by plotting the heat-transfer coefficient ratio with respect to the pressure ratio of the two designs under identical operating conditions. This numerical study clearly indicates that wavy channels are better from the thermal performance point of view, whereas straight channels are better from the pumping power point of view, and the quantitative values are presented in graphical form.
    • Download: (2.190Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An In-Depth Comparison of Straight and Wavy Microchannel Heat Exchangers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295921
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorPandey, Vishwas Kumar
    contributor authorNegi, Vinay Pratap Singh
    contributor authorRanganayakulu, Chennu
    date accessioned2024-04-24T22:48:44Z
    date available2024-04-24T22:48:44Z
    date copyright3/18/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_5_051007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295921
    description abstractThis paper presents extensive fluid flow and Heat-Transfer studies conducted using a commercial computational fluid dynamics (CFD) package known as CFD-ACE® to elaborate and expand on the reference studies available for ceramic-compact counterflow microchannel heat exchangers (MCHEs). The computational 3D model was developed using an experimentally tested MCHE and validated with experimental data with 3–5% variation for hot fluid and 6–12% variation for cold fluid for the entire design of experiments (DoEs). This study aimed to identify the performance of novel microchannel shapes using numerical analysis. The MCHE has good heat exchange properties, a compact design at industrial throughput, and a lower inner volume. During the study and identification of novel channel shapes, the segmented wavy MCHE was evaluated. The results were compared with those of the same volume and area straight MCHE baseline design under various identical operating conditions. Although the performance in terms of effectiveness is increased up to ∼12–25% in wavy MCHE with respect to straight MCHE simultaneously, the pressure drop is also increased by ∼60–80% under the same operating conditions. Therefore, performance and trade-offs are required to make the correct decision regarding feasibility. The effectiveness of the heat-transfer enhancement was also evaluated by plotting the heat-transfer coefficient ratio with respect to the pressure ratio of the two designs under identical operating conditions. This numerical study clearly indicates that wavy channels are better from the thermal performance point of view, whereas straight channels are better from the pumping power point of view, and the quantitative values are presented in graphical form.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn In-Depth Comparison of Straight and Wavy Microchannel Heat Exchangers
    typeJournal Paper
    journal volume16
    journal issue5
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4064985
    journal fristpage51007-1
    journal lastpage51007-14
    page14
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian