YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation on Thermal Performance of Nanofluid-Assisted Wickless Heat Pipes for Electronic Thermal Management

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 004::page 41009-1
    Author:
    Jose, Jobin
    ,
    Hotta, Tapano Kumar
    DOI: 10.1115/1.4064589
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Heat pipes are passive heat transfer systems and serve as an effective thermal management solution for electronic devices. The adaptability of heat pipes makes these suited for a wide application range, especially in the field of electronic thermal management. The current study highlights the transient numerical analysis of wickless heat pipes (thermosyphons) for the thermal management of electronic devices. The thermal performance of the thermosyphon is analyzed using both copper oxide (CuO) and aluminum oxide (Al2O3) nanofluids with their concentrations at 1% and 5%. Deionized (DI) water is employed as a reference case for comparison. The study is carried out for variable heat inputs to the thermosyphon ranging 10–50 W for a time interval of 30 s. The idea is to analyze the effect of the evaporator heat input and the nanoparticles concentration on the temperature, heat transfer coefficient, thermal resistance, and effective thermal conductivity of the heat pipe. The results indicate that CuO nanoparticles at a 5% concentration lead to a maximum thermal resistance reduction of 4.31% at 50 W, while alumina nanoparticles at the same concentration lead to a more substantial reduction of 6.66% at the same heat load. The evaporator temperature varies between 377.52 K to 374.99 K using deionized water, and 376.95 K to 374.29 K using CuO nanofluid (at 1% concentration). The heat pipe's evaporator attains its highest convective heat transfer coefficient (437.91 W/m2K) by using alumina nanofluid with 1% nanoparticle concentration at 50 W. Moreover, the effective thermal conductivity of the heat pipe is enhanced by 5% and 7% for copper oxide and aluminum oxide nanofluids (with 5% concentration), respectively, at 50 W. Thus, the nanofluids play a significant role in improving the efficiency and reliability of electronic components. These findings demonstrate the potential of using the nanofluids in thermosyphons to enhance their thermal performance in electronic cooling applications.
    • Download: (1.051Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation on Thermal Performance of Nanofluid-Assisted Wickless Heat Pipes for Electronic Thermal Management

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295920
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorJose, Jobin
    contributor authorHotta, Tapano Kumar
    date accessioned2024-04-24T22:48:43Z
    date available2024-04-24T22:48:43Z
    date copyright2/19/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_4_041009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295920
    description abstractHeat pipes are passive heat transfer systems and serve as an effective thermal management solution for electronic devices. The adaptability of heat pipes makes these suited for a wide application range, especially in the field of electronic thermal management. The current study highlights the transient numerical analysis of wickless heat pipes (thermosyphons) for the thermal management of electronic devices. The thermal performance of the thermosyphon is analyzed using both copper oxide (CuO) and aluminum oxide (Al2O3) nanofluids with their concentrations at 1% and 5%. Deionized (DI) water is employed as a reference case for comparison. The study is carried out for variable heat inputs to the thermosyphon ranging 10–50 W for a time interval of 30 s. The idea is to analyze the effect of the evaporator heat input and the nanoparticles concentration on the temperature, heat transfer coefficient, thermal resistance, and effective thermal conductivity of the heat pipe. The results indicate that CuO nanoparticles at a 5% concentration lead to a maximum thermal resistance reduction of 4.31% at 50 W, while alumina nanoparticles at the same concentration lead to a more substantial reduction of 6.66% at the same heat load. The evaporator temperature varies between 377.52 K to 374.99 K using deionized water, and 376.95 K to 374.29 K using CuO nanofluid (at 1% concentration). The heat pipe's evaporator attains its highest convective heat transfer coefficient (437.91 W/m2K) by using alumina nanofluid with 1% nanoparticle concentration at 50 W. Moreover, the effective thermal conductivity of the heat pipe is enhanced by 5% and 7% for copper oxide and aluminum oxide nanofluids (with 5% concentration), respectively, at 50 W. Thus, the nanofluids play a significant role in improving the efficiency and reliability of electronic components. These findings demonstrate the potential of using the nanofluids in thermosyphons to enhance their thermal performance in electronic cooling applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation on Thermal Performance of Nanofluid-Assisted Wickless Heat Pipes for Electronic Thermal Management
    typeJournal Paper
    journal volume16
    journal issue4
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4064589
    journal fristpage41009-1
    journal lastpage41009-11
    page11
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian