YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Nanofluid as a Coolant in a Prismatic Battery for Thermal Management Systems

    Source: Journal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 003::page 31003-1
    Author:
    Venkateswarlu, B.
    ,
    Kim, Sung Chul
    ,
    Joo, Sang Woo
    ,
    Chavan, Santosh
    DOI: 10.1115/1.4064232
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study delves into the realm of numerical investigation of the heat transfer performance of nanofluids as coolants for prismatic batteries. Nanofluids are being employed in battery cooling systems to enhance overall thermal management and ensure the safe operation of batteries, particularly in situations involving high heat generation. In this study, different types of nanofluids were used along with a base fluid of ethylene glycol–water (EG–water 50%). The energy equations consider the effects of viscous dissipation and heat generation. The model generates a set of nonlinear partial differential equations, which can be transformed into ordinary differential equations (ODEs) using appropriate similarity variables. These ODEs are then solved numerically by employing the Runge–Kutta–Fehlberg method along with the shooting method to obtain solutions. The simulations in both 2D and 3D showcase the results for various parameters pertaining to thermal and velocity fields, heat transfer rate, and drag force. The findings reveal that heat generation leads to a staggering increase in temperature of 78.22%. However, using aluminum nanoparticles (NPs) as opposed to copper nanoparticles quickly reduced the battery’s maximum temperature by 9.31%. The exceptional heat generation strengths of CuO–EG and Al2O3–EG nanofluids also resulted in a significant increase in their heat transfer rates of around 40.42% and 42.13%, respectively. Additionally, the aluminum NPs exhibited a more rapid heat transfer rate of 4.06% when compared to the copper nanoparticles. This research contributes to the development of improved cooling strategies for prismatic battery applications, ultimately paving the way for enhanced battery performance, an extended lifespan, and improved safety in a wide range of industries and electric vehicles.
    • Download: (1.501Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Nanofluid as a Coolant in a Prismatic Battery for Thermal Management Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295911
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorVenkateswarlu, B.
    contributor authorKim, Sung Chul
    contributor authorJoo, Sang Woo
    contributor authorChavan, Santosh
    date accessioned2024-04-24T22:48:25Z
    date available2024-04-24T22:48:25Z
    date copyright1/12/2024 12:00:00 AM
    date issued2024
    identifier issn1948-5085
    identifier othertsea_16_3_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295911
    description abstractThis study delves into the realm of numerical investigation of the heat transfer performance of nanofluids as coolants for prismatic batteries. Nanofluids are being employed in battery cooling systems to enhance overall thermal management and ensure the safe operation of batteries, particularly in situations involving high heat generation. In this study, different types of nanofluids were used along with a base fluid of ethylene glycol–water (EG–water 50%). The energy equations consider the effects of viscous dissipation and heat generation. The model generates a set of nonlinear partial differential equations, which can be transformed into ordinary differential equations (ODEs) using appropriate similarity variables. These ODEs are then solved numerically by employing the Runge–Kutta–Fehlberg method along with the shooting method to obtain solutions. The simulations in both 2D and 3D showcase the results for various parameters pertaining to thermal and velocity fields, heat transfer rate, and drag force. The findings reveal that heat generation leads to a staggering increase in temperature of 78.22%. However, using aluminum nanoparticles (NPs) as opposed to copper nanoparticles quickly reduced the battery’s maximum temperature by 9.31%. The exceptional heat generation strengths of CuO–EG and Al2O3–EG nanofluids also resulted in a significant increase in their heat transfer rates of around 40.42% and 42.13%, respectively. Additionally, the aluminum NPs exhibited a more rapid heat transfer rate of 4.06% when compared to the copper nanoparticles. This research contributes to the development of improved cooling strategies for prismatic battery applications, ultimately paving the way for enhanced battery performance, an extended lifespan, and improved safety in a wide range of industries and electric vehicles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of Nanofluid as a Coolant in a Prismatic Battery for Thermal Management Systems
    typeJournal Paper
    journal volume16
    journal issue3
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4064232
    journal fristpage31003-1
    journal lastpage31003-13
    page13
    treeJournal of Thermal Science and Engineering Applications:;2024:;volume( 016 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian