YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs

    Source: Journal of Solar Energy Engineering:;2023:;volume( 146 ):;issue: 003::page 31005-1
    Author:
    Shankar, Ravi
    ,
    Kumar, Rajeev
    ,
    Pandey, Arun Kumar
    ,
    Thakur, Deep Singh
    DOI: 10.1115/1.4063858
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To improve the thermal and hydraulic performance of artificially roughened solar air heaters (SAHs), the current study analyzes the thermal-hydraulic performance or thermal enhancement factor of artificially roughened solar air heaters. In present experimental research on a solar air heater's absorber plate, newly designed spiral-shaped semi-conical ribs have been explored. The spiral-shaped semi-conical ribs have been designed with the aim of reducing the pressure drop across the rib so that thermal performance may be improved with a little increase in pressure drop after integrating the ribs into the SAH mainstream flow. The higher value of thermal-hydraulic performance indicates an increased heat transfer rate with a minimum increase in pumping power. In order to achieve the highest possible thermal enhancement factor, this experimental study intends to analyze the effects of different geometrical parameters on the heat transmission and friction behavior of numerous spiral-shaped semi-conical ribs. Multiple experiments were conducted using different levels of roughness heights to optimize the rib profile parameters. The Reynolds number (Re) ranges from 3358.65 to 18,095.59, the relative roughness height (e/Dh) 0.09 to 0.227, and relative roughness pitch (P/e) 3.7 to 5.5. These multiple spiral-shaped semi-conical ribs give the maximum thermal enhancement factor of 2.85 at (e/Dh) 0.182 and P/e of 4.1 at Reynolds number 18,095.59. It has been found that current rib geometry can increase the thermal performance of solar air heaters with minimum increased pumping power with reference to rib explored by earlier researchers.
    • Download: (1.038Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295832
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorShankar, Ravi
    contributor authorKumar, Rajeev
    contributor authorPandey, Arun Kumar
    contributor authorThakur, Deep Singh
    date accessioned2024-04-24T22:45:46Z
    date available2024-04-24T22:45:46Z
    date copyright11/10/2023 12:00:00 AM
    date issued2023
    identifier issn0199-6231
    identifier othersol_146_3_031005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295832
    description abstractTo improve the thermal and hydraulic performance of artificially roughened solar air heaters (SAHs), the current study analyzes the thermal-hydraulic performance or thermal enhancement factor of artificially roughened solar air heaters. In present experimental research on a solar air heater's absorber plate, newly designed spiral-shaped semi-conical ribs have been explored. The spiral-shaped semi-conical ribs have been designed with the aim of reducing the pressure drop across the rib so that thermal performance may be improved with a little increase in pressure drop after integrating the ribs into the SAH mainstream flow. The higher value of thermal-hydraulic performance indicates an increased heat transfer rate with a minimum increase in pumping power. In order to achieve the highest possible thermal enhancement factor, this experimental study intends to analyze the effects of different geometrical parameters on the heat transmission and friction behavior of numerous spiral-shaped semi-conical ribs. Multiple experiments were conducted using different levels of roughness heights to optimize the rib profile parameters. The Reynolds number (Re) ranges from 3358.65 to 18,095.59, the relative roughness height (e/Dh) 0.09 to 0.227, and relative roughness pitch (P/e) 3.7 to 5.5. These multiple spiral-shaped semi-conical ribs give the maximum thermal enhancement factor of 2.85 at (e/Dh) 0.182 and P/e of 4.1 at Reynolds number 18,095.59. It has been found that current rib geometry can increase the thermal performance of solar air heaters with minimum increased pumping power with reference to rib explored by earlier researchers.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4063858
    journal fristpage31005-1
    journal lastpage31005-14
    page14
    treeJournal of Solar Energy Engineering:;2023:;volume( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian