YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Excitation Strategies for Erosion by Cavitation Histotripsy

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2024:;volume( 007 ):;issue: 004::page 44501-1
    Author:
    Zhou, Yufeng
    DOI: 10.1115/1.4064769
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cavitation histotripsy has been applied to the disintegration on the surface of soft tissue in a well-controlled manner. Its performance was assumed to be determined by the acoustic pressure alone. Long pulse duration with low pulse repetition frequency (PRF) can also successfully generate erosion. This study was designed to investigate the excitation strategies for cavitation histotripsy-induced erosion. The erosion area and volumes produced by cavitation histotripsy on the alginate gel phantom using single-frequency, dual-frequency, and two pulsed excitations at the same power output at the PRF of 1 Hz and 200 Hz were compared. Dual-frequency excitation can improve the erosion at all PRFs, while pulsed excitations decrease it at the PRF of 200 Hz. Using both pulsed and dual-frequency excitations has more erosion areas than using single-frequency at a PRF of 1 Hz. In comparison, although the induced erosion areas using the pulsed excitations are larger than those of single-frequency at the PRF of 200 Hz, the erosion volumes are much lower than those of dual-frequency excitation. It suggests that a sufficient long pulse duration is another important factor for the performance of cavitation histotripsy. Dual-frequency excitation or amplitude modulation by the low-frequency sinusoidal envelope can achieve more erosion than that produced by single-frequency excitation at the same power output in a wide range of PRFs.
    • Download: (736.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Excitation Strategies for Erosion by Cavitation Histotripsy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295527
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorZhou, Yufeng
    date accessioned2024-04-24T22:36:30Z
    date available2024-04-24T22:36:30Z
    date copyright2/28/2024 12:00:00 AM
    date issued2024
    identifier issn2572-7958
    identifier otherjesmdt_007_04_044501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295527
    description abstractCavitation histotripsy has been applied to the disintegration on the surface of soft tissue in a well-controlled manner. Its performance was assumed to be determined by the acoustic pressure alone. Long pulse duration with low pulse repetition frequency (PRF) can also successfully generate erosion. This study was designed to investigate the excitation strategies for cavitation histotripsy-induced erosion. The erosion area and volumes produced by cavitation histotripsy on the alginate gel phantom using single-frequency, dual-frequency, and two pulsed excitations at the same power output at the PRF of 1 Hz and 200 Hz were compared. Dual-frequency excitation can improve the erosion at all PRFs, while pulsed excitations decrease it at the PRF of 200 Hz. Using both pulsed and dual-frequency excitations has more erosion areas than using single-frequency at a PRF of 1 Hz. In comparison, although the induced erosion areas using the pulsed excitations are larger than those of single-frequency at the PRF of 200 Hz, the erosion volumes are much lower than those of dual-frequency excitation. It suggests that a sufficient long pulse duration is another important factor for the performance of cavitation histotripsy. Dual-frequency excitation or amplitude modulation by the low-frequency sinusoidal envelope can achieve more erosion than that produced by single-frequency excitation at the same power output in a wide range of PRFs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Excitation Strategies for Erosion by Cavitation Histotripsy
    typeJournal Paper
    journal volume7
    journal issue4
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4064769
    journal fristpage44501-1
    journal lastpage44501-4
    page4
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2024:;volume( 007 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian