YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Film Development on Primary Breakup in a Prefilming Airblast Atomizer

    Source: Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 009::page 91012-1
    Author:
    Wetherell, Jack R. J.
    ,
    Garmory, Andrew
    DOI: 10.1115/1.4064729
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Liquid fueled gas turbines are likely to remain a dominant force in aviation propulsion for the foreseeable future, and therefore understanding the atomization process is key to meeting future emissions and performance legislation. To make experiments and simulations possible, simplified geometry and boundary conditions are often used, for example, simulations of primary atomization often use a fixed film height and velocity. This paper aims to quantify the effect of a fully developed unsteady film on the atomization process. A custom Coupled Level Set & Volume of Fluid (CLSVOF) solver with adaptive meshing built in OpenFOAM v9 is used. A simulation of the atomization process in the Karlsruhe Institute of Technology atomization experiment (Warncke et al., 2017, “Experimental and Numerical Investigation of the Primary Breakup of an Airblasted Liquid Sheet,” Int. J. Multiphase Flow, 91, pp. 208–224) is presented. A precursor simulation of the film development is used to provide accurate, temporally and spatially resolved inlet boundary conditions. These results are compared to previous CLSVOF simulations from Wetherell et al. (2020, “Coupled Level Set Volume of Fluid Simulations of Prefilming Airblast Atomization With Adaptive Meshing,” ASME Paper No. GT2020-14213)” using traditional boundary conditions. The unsteady film has doubled the modal ligament length and widened the distribution, and is now in better agreement with experimental measurements. A clear correlation in both time and space is observed between the film, atomization process, and spray. The sauter mean diameter (SMD) is significantly increased, again giving better agreement with the experiment. A discussion of extracting statistical descriptions of the spray is given, outlining the unfeasible computational cost required to converge droplet diameter distributions and other high order statistics for a case such as this.
    • Download: (2.368Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Film Development on Primary Breakup in a Prefilming Airblast Atomizer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295272
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorWetherell, Jack R. J.
    contributor authorGarmory, Andrew
    date accessioned2024-04-24T22:28:01Z
    date available2024-04-24T22:28:01Z
    date copyright3/20/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4795
    identifier othergtp_146_09_091012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295272
    description abstractLiquid fueled gas turbines are likely to remain a dominant force in aviation propulsion for the foreseeable future, and therefore understanding the atomization process is key to meeting future emissions and performance legislation. To make experiments and simulations possible, simplified geometry and boundary conditions are often used, for example, simulations of primary atomization often use a fixed film height and velocity. This paper aims to quantify the effect of a fully developed unsteady film on the atomization process. A custom Coupled Level Set & Volume of Fluid (CLSVOF) solver with adaptive meshing built in OpenFOAM v9 is used. A simulation of the atomization process in the Karlsruhe Institute of Technology atomization experiment (Warncke et al., 2017, “Experimental and Numerical Investigation of the Primary Breakup of an Airblasted Liquid Sheet,” Int. J. Multiphase Flow, 91, pp. 208–224) is presented. A precursor simulation of the film development is used to provide accurate, temporally and spatially resolved inlet boundary conditions. These results are compared to previous CLSVOF simulations from Wetherell et al. (2020, “Coupled Level Set Volume of Fluid Simulations of Prefilming Airblast Atomization With Adaptive Meshing,” ASME Paper No. GT2020-14213)” using traditional boundary conditions. The unsteady film has doubled the modal ligament length and widened the distribution, and is now in better agreement with experimental measurements. A clear correlation in both time and space is observed between the film, atomization process, and spray. The sauter mean diameter (SMD) is significantly increased, again giving better agreement with the experiment. A discussion of extracting statistical descriptions of the spray is given, outlining the unfeasible computational cost required to converge droplet diameter distributions and other high order statistics for a case such as this.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Film Development on Primary Breakup in a Prefilming Airblast Atomizer
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4064729
    journal fristpage91012-1
    journal lastpage91012-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian