YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of the Effect of Superheated Liquid Fuel Injection on the Combustion Characteristics of Lean Premixed Flames

    Source: Journal of Engineering for Gas Turbines and Power:;2023:;volume( 146 ):;issue: 005::page 51012-1
    Author:
    Izadi, Saeed
    ,
    Zanger, Jan
    ,
    Baggio, Martina
    ,
    Seliger-Ost, Hannah
    ,
    Kutne, Peter
    ,
    Aigner, Manfred
    DOI: 10.1115/1.4063772
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of superheated liquid fuel injection on the performance and emissions of a single nozzle combustor was investigated. Combustion of the lean premixed flames was achieved using a combination of jet and swirl as a stabilization method. In a nonreactive setup, the optimum transition temperature of Jet A-1 fuel from liquid to superheated vaporized state was analyzed. In a subsequent reactive setup, a series of tests were conducted with the liquid fuel at low and elevated temperatures. The experiments were conducted at ambient pressure and various air and fuel preheat temperatures, axial swirlers, thermal powers, adiabatic flame temperatures, and flame tube diameters. Concentrations of nitric oxide (NOx) and carbon monoxide (CO) in the flue gas were measured. The operating conditions were systematically selected according to the design of experiments (DOE) method. The results showed that the adiabatic flame temperature caused the most significant change in combustion emissions and the position and shape of the reaction zone, while the superheated fuel injection had only a minor effect because the liquid fuel droplets were largely vaporized before entering the reaction zone through the integration of a swirler and a prefilmer. The use of the axial swirler and prefilmer allowed the combustor to operate in both spray and fully vaporized fuel conditions. As a result, very low emission concentrations of NOx (≈5 ppm) and CO (≈6 ppm) were achieved. The median flame length and height above the burner of the characterized flames showed competitive values of 32 mm and 50 mm, respectively. Lean blowout limits of less than 1500 K were achieved. Two different flame modes were observed during the experiments. By increasing the bulk velocity of the combustor, its hysteresis was resolved, resulting in stable and reliable flames with a wide low-NOx operating range.
    • Download: (3.208Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of the Effect of Superheated Liquid Fuel Injection on the Combustion Characteristics of Lean Premixed Flames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295224
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorIzadi, Saeed
    contributor authorZanger, Jan
    contributor authorBaggio, Martina
    contributor authorSeliger-Ost, Hannah
    contributor authorKutne, Peter
    contributor authorAigner, Manfred
    date accessioned2024-04-24T22:26:27Z
    date available2024-04-24T22:26:27Z
    date copyright12/20/2023 12:00:00 AM
    date issued2023
    identifier issn0742-4795
    identifier othergtp_146_05_051012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295224
    description abstractThe effect of superheated liquid fuel injection on the performance and emissions of a single nozzle combustor was investigated. Combustion of the lean premixed flames was achieved using a combination of jet and swirl as a stabilization method. In a nonreactive setup, the optimum transition temperature of Jet A-1 fuel from liquid to superheated vaporized state was analyzed. In a subsequent reactive setup, a series of tests were conducted with the liquid fuel at low and elevated temperatures. The experiments were conducted at ambient pressure and various air and fuel preheat temperatures, axial swirlers, thermal powers, adiabatic flame temperatures, and flame tube diameters. Concentrations of nitric oxide (NOx) and carbon monoxide (CO) in the flue gas were measured. The operating conditions were systematically selected according to the design of experiments (DOE) method. The results showed that the adiabatic flame temperature caused the most significant change in combustion emissions and the position and shape of the reaction zone, while the superheated fuel injection had only a minor effect because the liquid fuel droplets were largely vaporized before entering the reaction zone through the integration of a swirler and a prefilmer. The use of the axial swirler and prefilmer allowed the combustor to operate in both spray and fully vaporized fuel conditions. As a result, very low emission concentrations of NOx (≈5 ppm) and CO (≈6 ppm) were achieved. The median flame length and height above the burner of the characterized flames showed competitive values of 32 mm and 50 mm, respectively. Lean blowout limits of less than 1500 K were achieved. Two different flame modes were observed during the experiments. By increasing the bulk velocity of the combustor, its hysteresis was resolved, resulting in stable and reliable flames with a wide low-NOx operating range.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of the Effect of Superheated Liquid Fuel Injection on the Combustion Characteristics of Lean Premixed Flames
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4063772
    journal fristpage51012-1
    journal lastpage51012-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2023:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian